\[已知 y=f(x) , \ \ 请使用对数求导法求 y' \]
\(\\ \\\)
适用条件
1.幂指函数, 例如: $ \ y=x^{\sin{x}}$
2.多因子乘幂型函数, 例如:
\(\\\)
\(y = \sqrt{x^{2}(1-x^{2})\sin x}\)
\(\\\)
\(y = a^{5}b^{6}c^{7}\)
\(\\ \\\)
方法:
\(\\\)
step1:方程两边同时取对数
\(\\\)
step2:两边同时对\(x\)求导
\(\\\)
step3:计算关于\(y'\)的方程
\(\\ \\\)
具体过程:
\(\\\)
已知\(y = f(x), 求y'\)
\(\\\)
两边同取对数: \(\ln{y} = \ln{f(x)}\)
\(\\\)
则: \((\ln{y})' = \ln{f'(x)}\)
\(\\ \\\)
设\(\ln{y} = u\), 则 \(u(y) = \ln{y},y = (y)\)
\(\\\)
由链式法则得出:
\((\ln{y})' = [u(y)]' = u' \cdot y'\)
\(\\\)
根据常见函数求导公式: \(u' = (\log_{e}{y})' = \frac{1}{y}\)
\(\\\)
\(\therefore [u(y)]' = (\ln{y})' = \frac{1}{y} \cdot y'\)
\(\\ \\\)
\(\therefore \frac{1}{y} \cdot y' = \ln{f'(x)}\)
\(\\\)
\(y' = \ln{f'(x)} \cdot y\)