""" Functions for 2D matrix operations """ from __future__ import annotations from typing import Any def add(*matrix_s: list[list[int]]) -> list[list[int]]: """ >>> add([[1,2],[3,4]],[[2,3],[4,5]]) [[3, 5], [7, 9]] >>> add([[1.2,2.4],[3,4]],[[2,3],[4,5]]) [[3.2, 5.4], [7, 9]] >>> add([[1, 2], [4, 5]], [[3, 7], [3, 4]], [[3, 5], [5, 7]]) [[7, 14], [12, 16]] >>> add([3], [4, 5]) Traceback (most recent call last): ... TypeError: 期望矩阵,而得到整数/列表 """ if all(_check_not_integer(m) for m in matrix_s): for i in matrix_s[1:]: _verify_matrix_sizes(matrix_s[0], i) return [[sum(t) for t in zip(*m)] for m in zip(*matrix_s)] raise TypeError("期望矩阵,而得到整数/列表") def subtract(matrix_a: list[list[int]], matrix_b: list[list[int]]) -> list[list[int]]: """ >>> subtract([[1,2],[3,4]],[[2,3],[4,5]]) [[-1, -1], [-1, -1]] >>> subtract([[1,2.5],[3,4]],[[2,3],[4,5.5]]) [[-1, -0.5], [-1, -1.5]] >>> subtract([3], [4, 5]) Traceback (most recent call last): ... TypeError: 期望矩阵,而得到整数/列表 """ if ( _check_not_integer(matrix_a) and _check_not_integer(matrix_b) and _verify_matrix_sizes(matrix_a, matrix_b) ): return [[i - j for i, j in zip(*m)] for m in zip(matrix_a, matrix_b)] raise TypeError("期望矩阵,而得到整数/列表") def scalar_multiply(matrix: list[list[int]], n: float) -> list[list[float]]: """ >>> scalar_multiply([[1,2],[3,4]],5) [[5, 10], [15, 20]] >>> scalar_multiply([[1.4,2.3],[3,4]],5) [[7.0, 11.5], [15, 20]] """ return [[x * n for x in row] for row in matrix] def multiply(matrix_a: list[list[int]], matrix_b: list[list[int]]) -> list[list[int]]: """ >>> multiply([[1,2],[3,4]],[[5,5],[7,5]]) [[19, 15], [43, 35]] >>> multiply([[1,2.5],[3,4.5]],[[5,5],[7,5]]) [[22.5, 17.5], [46.5, 37.5]] >>> multiply([[1, 2, 3]], [[2], [3], [4]]) [[20]] """ if _check_not_integer(matrix_a) and _check_not_integer(matrix_b): rows, cols = _verify_matrix_sizes(matrix_a, matrix_b) if cols[0] != rows[1]: msg = ( "无法乘以维度为 " f"({rows[0]},{cols[0]}) 和 ({rows[1]},{cols[1]}) 的矩阵" ) raise ValueError(msg) return [ [sum(m * n for m, n in zip(i, j)) for j in zip(*matrix_b)] for i in matrix_a ] def identity(n: int) -> list[list[int]]: """ :param n: nxn 矩阵的维度 :type n: int :return: 形状为 [n, n] 的单位矩阵 >>> identity(3) [[1, 0, 0], [0, 1, 0], [0, 0, 1]] """ n = int(n) return [[int(row == column) for column in range(n)] for row in range(n)] def transpose( matrix: list[list[int]], return_map: bool = True ) -> list[list[int]] | map[list[int]]: """ >>> transpose([[1,2],[3,4]]) # doctest: +ELLIPSIS <map object at ... >>> transpose([[1,2],[3,4]], return_map=False) [[1, 3], [2, 4]] >>> transpose([1, [2, 3]]) Traceback (most recent call last): ... TypeError: 期望矩阵,而得到整数/列表 """ if _check_not_integer(matrix): if return_map: return map(list, zip(*matrix)) else: return list(map(list, zip(*matrix))) raise TypeError("期望矩阵,而得到整数/列表") def minor(matrix: list[list[int]], row: int, column: int) -> list[list[int]]: """ >>> minor([[1, 2], [3, 4]], 1, 1) [[1]] """ minor = matrix[:row] + matrix[row + 1 :] return [row[:column] + row[column + 1 :] for row in minor] def determinant(matrix: list[list[int]]) -> Any: """ >>> determinant([[1, 2], [3, 4]]) -2 >>> determinant([[1.5, 2.5], [3, 4]]) -1.5 """ if len(matrix) == 1: return matrix[0][0] return sum( x * determinant(minor(matrix, 0, i)) * (-1) ** i for i, x in enumerate(matrix[0]) ) def inverse(matrix: list[list[int]]) -> list[list[float]] | None: """ >>> inverse([[1, 2], [3, 4]]) [[-2.0, 1.0], [1.5, -0.5]] >>> inverse([[1, 1], [1, 1]]) """ # https://stackoverflow.com/questions/20047519/python-doctests-test-for-none det = determinant(matrix) if det == 0: return None matrix_minor = [ [determinant(minor(matrix, i, j)) for j in range(len(matrix))] for i in range(len(matrix)) ] cofactors = [ [x * (-1) ** (row + col) for col, x in enumerate(matrix_minor[row])] for row in range(len(matrix)) ] adjugate = list(transpose(cofactors)) return scalar_multiply(adjugate, 1 / det) def _check_not_integer(matrix: list[list[int]]) -> bool: return not isinstance(matrix, int) and not isinstance(matrix[0], int) def _shape(matrix: list[list[int]]) -> tuple[int, int]: return len(matrix), len(matrix[0]) def _verify_matrix_sizes( matrix_a: list[list[int]], matrix_b: list[list[int]] ) -> tuple[tuple[int, int], tuple[int, int]]: shape = _shape(matrix_a) + _shape(matrix_b) if shape[0] != shape[3] or shape[1] != shape[2]: msg = ( "操作数的形状不匹配,形状为 " f"({shape[0], shape[1]}), ({shape[2], shape[3]})" ) raise ValueError(msg) return (shape[0], shape[2]), (shape[1], shape[3]) def main() -> None: matrix_a = [[12, 10], [3, 9]] matrix_b = [[3, 4], [7, 4]] matrix_c = [[11, 12, 13, 14], [21, 22, 23, 24], [31, 32, 33, 34], [41, 42, 43, 44]] matrix_d = [[3, 0, 2], [2, 0, -2], [0, 1, 1]] print(f"加法操作, {add(matrix_a, matrix_b) } \n") print(f"乘法操作, {multiply(matrix_a, matrix_b) } \n") print(f"单位矩阵: {identity(5)}\n") print(f"{matrix_c} 的子矩阵 = {minor(matrix_c, 1, 2)} \n") print(f"{matrix_b} 的行列式 = {determinant(matrix_b)} \n") print(f"{matrix_d} 的逆矩阵 = {inverse(matrix_d)}\n") if __name__ == "__main__": import doctest doctest.testmod() main()
标签:return,运算,int,矩阵,list,shape,row,matrix From: https://www.cnblogs.com/mlhelloworld/p/18001674