首页 > 其他分享 >聊聊ClickHouse MergeTree引擎的固定/自适应索引粒度

聊聊ClickHouse MergeTree引擎的固定/自适应索引粒度

时间:2024-02-01 13:57:29浏览次数:30  
标签:201403 test001 idx 32 od primary 粒度 MergeTree ClickHouse

 前言

我们在刚开始学习ClickHouse的MergeTree引擎时,就会发现建表语句的末尾总会有SETTINGS index_granularity = 8192这句话(其实不写也可以),表示索引粒度为8192。在每个data part中,索引粒度参数的含义有二:

  • 每隔index_granularity行对主键组的数据进行采样,形成稀疏索引,并存储在primary.idx文件中;

  • 每隔index_granularity行对每一列的压缩数据([column].bin)进行采样,形成数据标记,并存储在[column].mrk文件中。

index_granularity、primary.idx、[column].bin/mrk之间的关系可以用ClickHouse之父Alexey Milovidov展示过的一幅简图来表示。

image.png

但是早在ClickHouse 19.11.8版本,社区就引入了自适应(adaptive)索引粒度的特性,并且在之后的版本中都是默认开启的。也就是说,主键索引和数据标记生成的间隔可以不再固定,更加灵活。下面通过简单实例来讲解固定索引粒度和自适应索引粒度之间的不同之处。

固定索引粒度

利用Yandex.Metrica提供的hits_v1测试数据集,创建如下的表。

CREATE TABLE datasets.hits_v1_fixed
(
    `WatchID` UInt64,
    `JavaEnable` UInt8,
    `Title` String,
    -- A lot more columns...
)
ENGINE -- Disable adaptive index granularity

注意使用SETTINGS index_granularity_bytes = 0取消自适应索引粒度。将测试数据导入之后,执行OPTIMIZE TABLE语句触发merge,以方便观察索引和标记数据。

来到merge完成后的数据part目录中——笔者这里是201403_1_32_3,并利用od(octal dump)命令观察primary.idx中的内容。注意索引列一共有3列,Counter和intHash32(UserID)都是32位整形,EventDate是16位整形(Date类型存储的是距离1970-01-01的天数)。

[root@ck-test001 201403_1_32_3]# od -An -i -j 0 -N 4 primary.idx 
          57  # Counter[0]
[root@ck-test001 201403_1_32_3]# od -An -d -j 4 -N 2 primary.idx 
 16146        # EventDate[0]
[root@ck-test001 201403_1_32_3]# od -An -i -j 6 -N 4 primary.idx 
    78076527  # intHash32(UserID)[0]
[root@ck-test001 201403_1_32_3]# od -An -i -j 10 -N 4 primary.idx 
        1635  # Counter[1]
[root@ck-test001 201403_1_32_3]# od -An -d -j 14 -N 2 primary.idx 
 16149        # EventDate[1]
[root@ck-test001 201403_1_32_3]# od -An -i -j 16 -N 4 primary.idx 
  1562260480  # intHash32(UserID)[1]
[root@ck-test001 201403_1_32_3]# od -An -i -j 20 -N 4 primary.idx 
        3266  # Counter[2]
[root@ck-test001 201403_1_32_3]# od -An -d -j 24 -N 2 primary.idx 
 16148        # EventDate[2]
[root@ck-test001 201403_1_32_3]# od -An -i -j 26 -N 4 primary.idx 
   490736209  # intHash32(UserID)[2]

能够看出ORDER BY的第一关键字Counter确实是递增的,但是不足以体现出index_granularity的影响。因此再观察一下标记文件的内容,以8位整形的Age列为例,比较简单。

[root@ck-test001 201403_1_32_3]# od -An -l -j 0 -N 320 Age.mrk
                    0                    0
                    0                 8192
                    0                16384
                    0                24576
                    0                32768
                    0                40960
                    0                49152
                    0                57344
                19423                    0
                19423                 8192
                19423                16384
                19423                24576
                19423                32768
                19423                40960
                19423                49152
                19423                57344
                45658                    0
                45658                 8192
                45658                16384
                45658                24576

上面打印出了两列数据,表示被选为标记的行的两个属性:第一个属性为该行所处的压缩数据块在对应bin文件中的起始偏移量,第二个属性为该行在数据块解压后,在块内部所处的偏移量,单位均为字节。由于一条Age数据在解压的情况下正好占用1字节,所以能够证明数据标记是按照固定index_granularity的规则生成的。

自适应索引粒度

创建同样结构的表,写入相同的测试数据,但是将index_granularity_bytes设为1MB(为了方便看出差异而已,默认值是10MB),以启用自适应索引粒度。

CREATE TABLE datasets.hits_v1_adaptive
(
    `WatchID` UInt64,
    `JavaEnable` UInt8,
    `Title` String,
    -- A lot more columns...
)
ENGINE -- Enable adaptive index granularity

index_granularity_bytes表示每隔表中数据的大小来生成索引和标记,且与index_granularity共同作用,只要满足两个条件之一即生成。

触发merge之后,观察primary.idx的数据。

[root@ck-test001 201403_1_32_3]# od -An -i -j 0 -N 4 primary.idx 
          57  # Counter[0]
[root@ck-test001 201403_1_32_3]# od -An -d -j 4 -N 2 primary.idx 
 16146        # EventDate[0]
[root@ck-test001 201403_1_32_3]# od -An -i -j 6 -N 4 primary.idx 
    78076527  # intHash32(UserID)[0]
[root@ck-test001 201403_1_32_3]# od -An -i -j 10 -N 4 primary.idx
          61  # Counter[1]
[root@ck-test001 201403_1_32_3]# od -An -d -j 14 -N 2 primary.idx
 16151        # EventDate[1]
[root@ck-test001 201403_1_32_3]# od -An -i -j 16 -N 4 primary.idx
  1579769176  # intHash32(UserID)[1]
[root@ck-test001 201403_1_32_3]# od -An -i -j 20 -N 4 primary.idx
          63  # Counter[2]
[root@ck-test001 201403_1_32_3]# od -An -d -j 24 -N 2 primary.idx
 16148        # EventDate[2]
[root@ck-test001 201403_1_32_3]# od -An -i -j 26 -N 4 primary.idx
  2037061113  # intHash32(UserID)[2]

通过Counter列的数据可见,主键索引明显地变密集了,说明index_granularity_bytes的设定生效了。接下来仍然以Age列为例观察标记文件,注意文件扩展名变成了mrk2,说明启用了自适应索引粒度。

[root@ck-test001 201403_1_32_3]# od -An -l -j 0 -N 2048 --width=24 Age.mrk2
                    0                    0                 1120
                    0                 1120                 1120
                    0                 2240                 1120
                    0                 3360                 1120
                    0                 4480                 1120
                    0                 5600                 1120
                    0                 6720                 1120
                    0                 7840                  352
                    0                 8192                 1111
                    0                 9303                 1111
                    0                10414                 1111
                    0                11525                 1111
                    0                12636                 1111
                    0                13747                 1111
                    0                14858                 1111
                    0                15969                  415
                    0                16384                 1096
# 略去一些
                17694                    0                 1102
                17694                 1102                 1102
                17694                 2204                 1102
                17694                 3306                 1102
                17694                 4408                 1102
                17694                 5510                 1102
                17694                 6612                  956
                17694                 7568                 1104
# ......

mrk2文件被格式化成了3列,前两列的含义与mrk文件相同,而第三列的含义则是两个标记之间相隔的行数。可以观察到,每隔1100行左右就会生成一个标记(同时也说明该表内1MB的数据大约包含1100行)。同时,在偏移量计数达到8192、16384等8192的倍数时(即经过了index_granularity的倍数行),同样也会生成标记,证明两个参数是协同生效的。

最后一个问题:ClickHouse为什么要设计自适应索引粒度呢?

当一行的数据量比较大时(比如达到了1kB甚至数kB),单纯按照固定索引粒度会造成每个“颗粒”(granule)的数据量膨胀,拖累读写性能。有了自适应索引粒度之后,每个granule的数据量可以被控制在合理的范围内,官方给定的默认值10MB在大多数情况下都不需要更改。

作者:京东物流 康琪

来源:京东云开发者社区 自猿其说 Tech 转载请注明来源

标签:201403,test001,idx,32,od,primary,粒度,MergeTree,ClickHouse
From: https://www.cnblogs.com/Jcloud/p/18001067

相关文章

  • 详解如何在数仓中搭建细粒度容灾应用
    本文分享自华为云社区《GaussDB(DWS)细粒度容灾使用介绍》,作者:天蓝蓝。1.前言适用版本:【8.2.1.210及以上】当前数仓承载的客户业务越来越多,从而导致客户对于数仓的可靠性要求不断增加。尤其在金融领域,容灾备份机制是信息系统必须提供的能力之一。本文介绍了在云上环境的双集......
  • 企业实现细粒度权限控制的重要性和执行策略
    在信息安全领域,细粒度权限控制是一项至关重要的实践,它确保正确的人员在合适的时间访问适当的数据资源。过渡开放的权限可能会导致敏感信息轻易落入非授权者手中,而过于严格的控制则可能妨碍了正常的业务流程。因此,如何平衡权限控制的精细化与企业高效运营之间的关系,是每一个企业必......
  • ClickHouse(22)ClickHouse集成HDFS表引擎详细解析
    HDFS这个引擎提供了与ApacheHadoop生态系统的集成,允许通过ClickHouse管理HDFS上的数据。这个引擎提供了Hadoop的特定功能。用法ENGINE=HDFS(URI,format)URI参数是HDFS中整个文件的URIformat参数指定一种可用的文件格式。执行SELECT查询时,格式必须支持输入,以及执行INSE......
  • 华为云CCE Turbo:基于eBPF的用户自定义多粒度网络监控能力
    本文分享自华为云社区《华为云CCETurbo:基于eBPF的用户自定义多粒度网络监控能力》,作者:云容器大未来。基于eBPF的容器监控的兴起容器具有极致弹性、标准运行时、易于部署等优点,越来越多的客户选择使用容器来部署自己的服务,随着容器规模越来越大,容器间网络交互也越来越复杂。我们需......
  • 华为云CCE Turbo:基于eBPF的用户自定义多粒度网络监控能力
    本文分享自华为云社区《华为云CCETurbo:基于eBPF的用户自定义多粒度网络监控能力》,作者:云容器大未来。基于eBPF的容器监控的兴起容器具有极致弹性、标准运行时、易于部署等优点,越来越多的客户选择使用容器来部署自己的服务,随着容器规模越来越大,容器间网络交互......
  • ClickHouse知识汇总
    什么是OLAP与OLTPOLAP(OnLineAnalyticalProcessing)联机分析系统;OLTP(OnLineTransactionProcessing)联机事务处理系统;OLAP主要用来读取数据、分析数据,辅助运营决策分析。数据一次性批量写入后,分析师需要从各种角度出发,对数据进行挖掘分析,以期发现其中的商业价值、业务变化趋势......
  • CDP 技术系列(二):ClickHouse+Bitmap 实现海量数据标签及群体组合计算
    一、背景介绍上一篇文章介绍了CDP中,面对单个标签或群体数十亿的数据如何存储我们都知道数据仓库的概念,它的里边存储了我们所有的数据,其中就包含了标签或群体所依赖的数据,但是这些数据并不能直接拿来使用,想要变成业务需要的标签或群体数据,还需要进行加工。数据工程师将数仓里的......
  • clickhouse 删除数据的几种常见的方式
    clickhouse数据库清理数据的方式很多,各有自己的优缺点,正面介绍几种常见的方式。一、执行delete方式此种方式为异步执行,并不是实时的。##DELETE操作--删除记录altertableck_dev01deletewhereid='33';--删除分片表数据altertableck_dev01onclustermain_clusterwher......
  • ClickHouse安装
    一、Docker安装1. docker-compose配置文件version:"3"networks:rhxy-network:external:trueservices:clickhouse:image:clickhouse/clickhouse-server:23.12.2.59-alpinecontainer_name:clickhousehostname:clic......
  • ClickHouse中“大列”造成的JOIN的内存超限问题
    ClickHouse中“大列”造成的JOIN的内存超限问题“大列”是指单行数据量非常大的列,通常是100KiB以上。这样的列会导致JOIN(通常LEFTJOIN和INNERJOIN)出现内存超限的异常。常用的JOIN算法这里讨论的是常用的JOIN算法:partialmergejoin与hashjoin。Directjoin算法不在本文......