首页 > 其他分享 >[ARC154E] Reverse and Inversion 题解

[ARC154E] Reverse and Inversion 题解

时间:2024-01-31 17:04:58浏览次数:37  
标签:ARC154E Inversion ch res int 题解 sum 1ll ans

题目链接

点击打开链接

题目解法

\(\sum j-i\) 是不好维护的,考虑把 \(j-i\) 拆成之和 \(i,j\) 相关的项
可以得到:\(\sum\limits_{i<j}[p_i>p_j](j-i)=\sum\limits_{i=1}^n i(\sum\limits_{j=1}^{i-1}[p_j>p_i]-\sum\limits_{j=i+1}^n[p_j<p_i])=\sum\limits_{i=1}^ni(i-1-\sum\limits_{j=1}^n[p_j<p_i])=i(i-p_i)\)
前面的 \(i^2\) 是好弄的,考虑如何求所有情况的 \(\sum ip_i\)
从概率方面考虑这个问题,从位置 \(i\) 翻转到位置 \(j\) 的方案数为 \(\min\{i,n-i+1,j,n-j+1\}\),从而可见 \(i\) 翻转到位置 \(j\) 和位置 \(n-j+1\) 的概率是一样的,所以位置 \(i\) 的数只要翻转过,期望移到的位置都为 \(\frac{n+1}{2}\)
每个位置没有翻转到的概率是好求的,令其为 \(gl_i\),所以答案即为 \((\frac{n(n+1)}{2})^m(\sum i^2-\sum( gl_i\times ip_i+(1-gl_i)\times \frac{n+1}{2}p_i))\)

时间复杂度 \(O(n\log P)\)

#include <bits/stdc++.h>
#define F(i,x,y) for(int i=(x);i<=(y);i++)
#define DF(i,x,y) for(int i=(x);i>=(y);i--)
#define ms(x,y) memset(x,y,sizeof(x))
#define SZ(x) (int)x.size()-1
#define all(x) x.begin(),x.end()
#define pb push_back
using namespace std;
typedef long long LL;
typedef unsigned long long ull;
typedef pair<int,int> pii;
template<typename T> void chkmax(T &x,T y){ x=max(x,y);}
template<typename T> void chkmin(T &x,T y){ x=min(x,y);}
inline int read(){
    int FF=0,RR=1;
    char ch=getchar();
    for(;!isdigit(ch);ch=getchar()) if(ch=='-') RR=-1;
    for(;isdigit(ch);ch=getchar()) FF=(FF<<1)+(FF<<3)+ch-48;
    return FF*RR;
}
const int N=200100,P=998244353;
int qmi(int a,int b){
    int res=1;
    for(;b;b>>=1){ if(b&1) res=1ll*res*a%P;a=1ll*a*a%P;}
    return res;
}
int n,m,p[N];
int main(){
    n=read(),m=read();
    F(i,1,n) p[i]=read();
    int iv2=qmi(2,P-2);
    int tot=qmi((1ll*n*(n+1)/2)%P,m),iv=qmi(tot,P-2);
    int ans=0;
    F(i,1,n) ans=(ans+1ll*i*i)%P;
    int t=1ll*(n+1)*iv2%P,res=0;
    F(i,1,n){
        int ways=(1ll*i*(i-1)+1ll*(n-i)*(n-i+1))%P*iv2%P;
        int gl=1ll*qmi(ways,m)*iv%P;
        res=(res+1ll*gl*p[i]%P*i+1ll*(P+1-gl)*t%P*p[i])%P;
    }
    ans=(ans-res+P)%P;ans=1ll*ans*tot%P;
    printf("%d\n",ans);
    return 0;
}

标签:ARC154E,Inversion,ch,res,int,题解,sum,1ll,ans
From: https://www.cnblogs.com/Farmer-djx/p/17999608

相关文章

  • [AGC024E] Sequence Growing Hard 题解
    题目链接点击打开链接题目解法考虑如何添加数,使得\(\{a_1,...,a_i\}\)到\(\{a_1,...,x,a_j,...,a_i\}\)是合法的需要手玩一会才能发现合法条件很简单:\(x>a_j\)考虑对这个进行计数一个一个添元素是难维护的,现在假设有最终的序列,每个位置有\((v,dfn)\),分别为值和添加的次......
  • CF813E Army Creation 题解
    题目链接:CF或者洛谷并不是很难的题,关于颜色数量类问题,那么很显然,沿用经典的"HH的项链"思想去思考问题。由于涉及到了\(k\)个数的限制,我们观察到如果一个数在一个区间上有区间贡献:其中\(x_k\)表示为当前\(x\)的第前\(k+1\)个数,换句话来讲,\(x_k\)到当前的\(x\)所......
  • The XOR-longest Path 题解
    我们观察题干知道此题为单调递增(节点),这样我们就不用跑dfs了很显然的一件事是两点间的权值只与子节点有关所以我们用w1[v]=w1[u]*w就能更新v到根节点的权值然后我们循环放入字典树,再取最大的(由于这题数据特别水,所以没算v-u的w1)#include<bits/stdc++.h>usingnamespacestd;in......
  • 题解 P7309 [COCI2018-2019#2] Kocka
    传送门。题意一个$N\timesN$的矩形,有从四周往内望去的第一个位置的距离,问是否存在一个矩形满足我们的观察。分析先说说我这个蒟蒻想出来的巨麻烦的方法。首先先判断最简单的矛盾,就是左右穿插,上下穿插,这是第一步。//-1变成nfor(inti=1;i<=n;++i)if(L[i]+R[i]>=n)......
  • 题解 P6548 [COCI2010-2011#2] IGRA
    传送门。题意有\(A\),\(B\)两个人,有一个含\(n\)个字符的字符串。\(A\)始终取最右侧的字符,\(B\)可以取任意一个字符,问\(B\)所取的字符串能否胜过\(A\),以及\(B\)能取的最大字符串。分析首先,我们\(A\)肯定会选择当前的最小的字符,我们就可以先把字符按大小排序,字符相......
  • 【题解】CF185D - Visit of the Great
    【题解】CF185D-VisitoftheGreat设\(d=\gcd(k^{2^a}+1,k^{2^b}+1),(a<b)\),则:\[k^{2^a}\equivk^{2^b}\equiv-1(\bmodd)\]所以\[1\equiv(-1)^{2^{b-a}}\equivk^{2^a*2^{b-a}}\equivk^{2^b}\equiv1(\bmodd)\]所以\(d\)为\(1\)或\(2\)。设\(t......
  • RocketMQ应用-消费幂等性问题解决
    重复消费产生原因生产者多次投递-投递时服务端接收后客户端网络原因确认失败,重新投递消费者扩容重试-消费者扩容导致正在消费的消息没有正常应答,服务端重新推送重复消费解决方案给消息增加唯一key,消费时校验key是否已经消费过消费者控制消息的幂等性(多次同样的操作结果一......
  • 9.【题解】计算器
    题解\(BSGS\)(拔山盖世)其实叫\(Baby\)\(Step\)\(Giant\)\(Step\)(大步小步)\(qwq\),事实上还有\(ex\)\(BSGS\),但是这里只写\(BSGS\)。当\(\gcd(x,y)=1\)时,\(BSGS\)可以用\(\sqrtn\)的时间复杂度求解\(\largey^x\equivz\pmodz\)的问题。(原根是\(\largex^a......
  • P6824 「EZEC-4」可乐 题解
    题目链接:可乐一开始想着0-1Trie,枚举\(x\)去写,然后判断就行了。然后想起南京区域赛的C题,其实和这个也有点大同小异的感觉,可以用更朴素的办法,找到对于一个\(a_i\)而言,满足题意的所有\(x\)去\(+1\)。这玩意很容易办到的,稍微讨论下:类似0-1Trie的按位讨论,从高位开始,我......
  • [ARC163D] Sum of SCC 题解
    题目链接点击打开链接题目解法好牛的性质!!!首先一个家喻户晓的性质是:竞赛图缩点之后是一条链考虑从这个上面拓展出一个更优美的性质:竞赛图的\(scc\)个数\(=\)把点集分成两个集合\(A,B\),满足\(\forallu\inA,v\inB\),\(u,v\)之间边的方向为\(u\tov\)的方案数\(-1\)......