首页 > 其他分享 >P6824 「EZEC-4」可乐 题解

P6824 「EZEC-4」可乐 题解

时间:2024-01-29 23:12:07浏览次数:26  
标签:typedef int 题解 T1 P6824 template EZEC include define

题目链接:可乐

一开始想着 0-1 Trie,枚举 \(x\) 去写,然后判断就行了。然后想起南京区域赛的 C 题,其实和这个也有点大同小异的感觉,可以用更朴素的办法,找到对于一个 \(a_i\) 而言,满足题意的所有 \(x\) 去 \(+1\)。这玩意很容易办到的,稍微讨论下:

类似 0-1 Trie 的按位讨论,从高位开始,我们知道如果 \(x\) 与 \(a_i\) 的某一位相同,就取 \(0\) 否则取 \(1\)。然后注意到 \(k\) 的某一位只有 \(0\) 或者 \(1\) 情况,所以当为 \(0\) 时,显然 \(x==a_i\) 这一位情况,并且情况唯一。当为 \(1\) 时,如果让异或结果为 \(0\) 则左半 \(01\) 异或树上的是所有数都能取到,很显然这个范围为 \([\ curr,curr+(1<<i)\ )\)。其实和数位 dp 或者说试填法的思想是一样的,不懂的画出 \(01\) Trie 自行理解就行。其中 \(curr\) 为使 \(a_i \oplus curr=0\)。当然另一边我们就直接让 \(x\) 带上可以使 \(a_i \oplus x=1\) 的那个数,比如 \(a_i\) 这一位为 \(1\),那么 \(x\) 这一位就该为 \(0\),反过来就该为 \(1\)。由于贡献的数是连续的很明显,所以我们可以直接差分区间,然后最后前缀和恢复,统计最大的覆盖数量即可,这里注意到为 \(\le k\),所以最后那个 \(x \oplus a_i=k\) 的 \(x\) 也是要计入贡献的,因此 \(wa\) 了好几发。

参照代码
#include <bits/stdc++.h>

// #pragma GCC optimize(2)
// #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")

#define isPbdsFile

#ifdef isPbdsFile

#include <bits/extc++.h>

#else

#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope>

#endif

using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};

template <typename T>
int disc(T* a, int n)
{
    return unique(a + 1, a + n + 1) - (a + 1);
}

template <typename T>
T lowBit(T x)
{
    return x & -x;
}

template <typename T>
T Rand(T l, T r)
{
    static mt19937 Rand(time(nullptr));
    uniform_int_distribution<T> dis(l, r);
    return dis(Rand);
}

template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
    return (a % b + b) % b;
}

template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
    a %= c;
    T1 ans = 1;
    for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
    return modt(ans, c);
}

template <typename T>
void read(T& x)
{
    x = 0;
    T sign = 1;
    char ch = getchar();
    while (!isdigit(ch))
    {
        if (ch == '-')sign = -1;
        ch = getchar();
    }
    while (isdigit(ch))
    {
        x = (x << 3) + (x << 1) + (ch ^ 48);
        ch = getchar();
    }
    x *= sign;
}

template <typename T, typename... U>
void read(T& x, U&... y)
{
    read(x);
    read(y...);
}

template <typename T>
void write(T x)
{
    if (typeid(x) == typeid(char))return;
    if (x < 0)x = -x, putchar('-');
    if (x > 9)write(x / 10);
    putchar(x % 10 ^ 48);
}

template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
    write(x), putchar(c);
    write(c, y...);
}


template <typename T11, typename T22, typename T33>
struct T3
{
    T11 one;
    T22 tow;
    T33 three;

    bool operator<(const T3 other) const
    {
        if (one == other.one)
        {
            if (tow == other.tow)return three < other.three;
            return tow < other.tow;
        }
        return one < other.one;
    }

    T3() { one = tow = three = 0; }

    T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
    {
    }
};

template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
    if (x < y)x = y;
}

template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
    if (x > y)x = y;
}

constexpr int MX = 1e6;
constexpr int N = 1 << static_cast<int>(ceil(log2(MX))) + 1;
int n, k;
int cnt[N];
constexpr int T = ceil(log2(N));

inline void solve()
{
    cin >> n >> k;
    while (n--)
    {
        int val;
        cin >> val;
        int x = 0;
        forv(i, T, 0)
        {
            const int idx = val >> i & 1; //当前val有无数,0/1
            if (k >> i & 1)
            {
                int curr = x | idx << i; //必须相同
                cnt[curr]++, cnt[curr + (1 << i)]--; //差分[curr,curr+(1<<i)-1] +1
                x |= (idx ^ 1) << i; //使其往右子树走算右子树情况
            }
            else x |= idx << i; //只能往左子树走
        }
        cnt[x]++, cnt[x + 1]--; //注意x^val==k的x也要计算贡献
    }
    forn(i, 1, N-1)cnt[i] += cnt[i - 1]; //前缀和恢复
    cout << *max_element(cnt, cnt + N); //最大答案
}

signed int main()
{
    // MyFile
    Spider
    //------------------------------------------------------
    // clock_t start = clock();
    int test = 1;
    //    read(test);
    // cin >> test;
    forn(i, 1, test)solve();
    //    while (cin >> n, n)solve();
    //    while (cin >> test)solve();
    // clock_t end = clock();
    // cerr << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;
}

\[时间复杂度为:\ O(n\log{V_{max}}) \]

标签:typedef,int,题解,T1,P6824,template,EZEC,include,define
From: https://www.cnblogs.com/Athanasy/p/17995561

相关文章

  • [ARC163D] Sum of SCC 题解
    题目链接点击打开链接题目解法好牛的性质!!!首先一个家喻户晓的性质是:竞赛图缩点之后是一条链考虑从这个上面拓展出一个更优美的性质:竞赛图的\(scc\)个数\(=\)把点集分成两个集合\(A,B\),满足\(\forallu\inA,v\inB\),\(u,v\)之间边的方向为\(u\tov\)的方案数\(-1\)......
  • CF1925B A Balanced Problemset? 题解
    CF1925B题解题目链接CodeforcesLuogu题目大意有一个长度为\(n\)且和为\(x\)的正整数序列,询问该序列可能的最大公因数。多测。简要思路首先先给出结论:最终的答案一定是\(x\)的因数。接下来我通过两种方法证明:一、类似于“更相减损法”一个序列的\(\gcd\)等于......
  • 2024 USACO 题解
    BronzeSilverT1Question给你长度为\(n\)的序列\(c\),$0\lec_i\leC$。若当前位置为\(0\)则表示这个数未知,要求你填数使得序列字典序最小,并满足给出的\(q\)条限制\((a_j,h_j)\),使得\(C_{h_j}\)是第一个严格大于\(C_1\cdotsC_{a_j}\)的数。Solution我的方法叫......
  • CF1925D Good Trip 题解
    考虑分别计算\(p\)和\(q\)。按照期望的定义,\(q\)应该等于方案的总数,也就是\(s^k\),其中\(s\)表示一共有多少个不同的组。考虑如何求\(p\),我们先只计算第\(i\)组对\(p\)的贡献。如果第\(i\)组一共被选了\(1\)次,那么贡献为:\[g=f_i\timesC_{k}^{1}\times(s-1)^{......
  • P5208 [WC2019] I 君的商店 题解
    第一道黑题,发个题解。很好玩的一道交互题。题意有一个长为\(n\)的01字符串,保证至少有一个1,且已知1的数量的奇偶性。每次可以询问两个下标集合,返回哪个下标集合中1的个数更多(相同则可能返回其中任意的一个)。求该字符串,查询次数有限。题解我们约定a,b,c等......
  • 洛谷题解-[ABC286E] Souvenir
    https://www.luogu.com.cn/problem/AT_abc286_e题目描述NNN個の都市があり、いくつかの相異なる都市の間は一方通行の直行便によって移動することができます。どの直行便が存在するかはNNN個の長さNNNの文字列S1,S2,…,SNS_1,S_2,\ldots,S_NS1​,S2​,…,SN​......
  • P5208 [WC2019] I 君的商店 题解
    第一道黑题,发个题解。很好玩的一道交互题。题意有一个长为\(n\)的01字符串,保证至少有一个1,且已知1的数量的奇偶性。每次可以询问两个下标集合,返回哪个下标集合中1的个数更多(相同则可能返回其中任意的一个)。求该字符串,查询次数有限。题解我们约定a,b,c等......
  • 题解 [ABC338D] Island Tour
    【洛谷博客】被降智的一道简单题。题意\(n\)个岛屿,第\(i\)座桥连接\(i\)和\(i+1\)(第\(N\)座桥连接着\(1\)和\(N\))。有一条长度为\(M\)的旅游序列\(X\),你需要按照顺序依次经过这些点,选择断掉一座桥使得旅游经过的桥最少。分析设断掉第\(i\)座桥会因为绕行增......
  • P10114 [LMXOI Round 1] Size 题解
    题目链接:[LMXOIRound1]Size挺有意思的诈骗题,其实这类题都喜欢批一个外壳,例如数据范围提示之类的。记得以前遇到的很多诈骗题,有一道cf的高分题,问的是区间出现次数的次数\(mex\),这玩意一开始感觉好难,出现次数还简单,还要考虑次数的次数,所以带修莫队的时候,一直没法确定怎么解决......
  • NOI 2017 蚯蚓排队 题解
    Meaning给定一些数字,对它们进行首尾相接和断开两种操作。对于每次询问,求对于每个数字,其后长度一定的数字串在给定数字串中出现的次数,并给出这些次数之积。Soultion对于每次首尾相接或断开的操作,如果直接对断点或合点两侧的整个数字串进行操作,时间复杂度不可接受。由于每次查询......