首页 > 其他分享 >神经网络优化篇:将 Batch Norm 拟合进神经网络(Fitting Batch Norm into a neural network)

神经网络优化篇:将 Batch Norm 拟合进神经网络(Fitting Batch Norm into a neural network)

时间:2024-01-31 14:00:13浏览次数:25  
标签:mini 神经网络 batch Batch beta gamma 归一化 Norm

将 Batch Norm 拟合进神经网络

假设有一个这样的神经网络,之前说过,可以认为每个单元负责计算两件事。第一,它先计算z,然后应用其到激活函数中再计算a,所以可以认为,每个圆圈代表着两步的计算过程。同样的,对于下一层而言,那就是\(z_{1}^{[2]}\)和\(a_{1}^{[2]}\)等。所以如果没有应用Batch归一化,会把输入\(X\)拟合到第一隐藏层,然后首先计算\(z^{[1]}\),这是由\(w^{[1]}\)和\(b^{[1]}\)两个参数控制的。接着,通常而言,会把\(z^{[1]}\)拟合到激活函数以计算\(a^{[1]}\)。但Batch归一化的做法是将\(z^{[1]}\)值进行Batch归一化,简称BN,此过程将由\({\beta}^{[1]}\)和\(\gamma^{[1]}\)两参数控制,这一操作会给一个新的规范化的\(z^{[1]}\)值(\({\tilde{z}}^{[1]}\)),然后将其输入激活函数中得到\(a^{[1]}\),即\(a^{[1]} = g^{[1]}({\tilde{z}}^{[ l]})\)。

现在,已在第一层进行了计算,此时Batch归一化发生在z的计算和\(a\)之间,接下来,需要应用\(a^{[1]}\)值来计算\(z^{[2]}\),此过程是由\(w^{[2]}\)和\(b^{[2]}\)控制的。与在第一层所做的类似,会将\(z^{[2]}\)进行Batch归一化,现在简称BN,这是由下一层的Batch归一化参数所管制的,即\({\beta}^{[2]}\)和\(\gamma^{[2]}\),现在得到\({\tilde{z}}^{[2]}\),再通过激活函数计算出\(a^{[2]}\)等等。

所以需要强调的是Batch归一化是发生在计算\(z\)和\(a\)之间的。直觉就是,与其应用没有归一化的\(z\)值,不如用归一过的\(\tilde{z}\),这是第一层(\({\tilde{z}}^{[1]}\))。第二层同理,与其应用没有规范过的\(z^{[2]}\)值,不如用经过方差和均值归一后的\({\tilde{z}}^{[2]}\)。所以,网络的参数就会是\(w^{[1]}\),\(b^{[1]}\),\(w^{[2]}\)和\(b^{[2]}\)等等,将要去掉这些参数。但现在,想象参数\(w^{[1]}\),\(b^{[1]}\)到\(w^{[l]}\),\(b^{[l]}\),将另一些参数加入到此新网络中\({\beta}^{[1]}\),\({\beta}^{[2]}\),\(\gamma^{[1]}\),\(\gamma^{[2]}\)等等。对于应用Batch归一化的每一层而言。需要澄清的是,请注意,这里的这些\(\beta\)(\({\beta}^{[1]}\),\({\beta}^{[2]}\)等等)和超参数\(\beta\)没有任何关系,下面会解释原因,后者是用于Momentum或计算各个指数的加权平均值。Adam论文的作者,在论文里用\(\beta\)代表超参数。Batch归一化论文的作者,则使用\(\beta\)代表此参数(\({\beta}^{[1]}\),\({\beta}^{[2]}\)等等),但这是两个完全不同的\(\beta\)。在两种情况下都决定使用\(\beta\),以便阅读那些原创的论文,但Batch归一化学习参数\({\beta}^{[1]}\),\({\beta}^{\left\lbrack2 \right\rbrack}\)等等和用于MomentumAdamRMSprop算法中的\(\beta\)不同。

所以现在,这是算法的新参数,接下来可以使用想用的任何一种优化算法,比如使用梯度下降法来执行它。

举个例子,对于给定层,会计算\(d{\beta}^{[l]}\),接着更新参数\(\beta\)为\({\beta}^{[l]} = {\beta}^{[l]} - \alpha d{\beta}^{[l]}\)。也可以使用AdamRMSpropMomentum,以更新参数\(\beta\)和\(\gamma\),并不是只应用梯度下降法。

即使在之前的说明中,已经解释过Batch归一化是怎么操作的,计算均值和方差,减去均值,再除以方差,如果它们使用的是深度学习编程框架,通常不必自己把Batch归一化步骤应用于Batch归一化层。因此,探究框架,可写成一行代码,比如说,在TensorFlow框架中,可以用这个函数(tf.nn.batch_normalization)来实现Batch归一化,稍后讲解,但实践中,不必自己操作所有这些具体的细节,但知道它是如何作用的,可以更好的理解代码的作用。但在深度学习框架中,Batch归一化的过程,经常是类似一行代码的东西。

所以,到目前为止,已经讲了Batch归一化,就像在整个训练站点上训练一样,或就像正在使用Batch梯度下降法。

实践中,Batch归一化通常和训练集的mini-batch一起使用。应用Batch归一化的方式就是,用第一个mini-batch(\(X^{\{1\}}\)),然后计算\(z^{[1]}\),这和上面所做的一样,应用参数\(w^{[1]}\)和\(b^{[1]}\),使用这个mini-batch(\(X^{\{1\}}\))。接着,继续第二个mini-batch(\(X^{\{2\}}\)),接着Batch归一化会减去均值,除以标准差,由\({\beta}^{[1]}\)和\(\gamma^{[1]}\)重新缩放,这样就得到了\({\tilde{z}}^{[1]}\),而所有的这些都是在第一个mini-batch的基础上,再应用激活函数得到\(a^{[1]}\)。然后用\(w^{[2]}\)和\(b^{[2]}\)计算\(z^{[2]}\),等等,所以做的这一切都是为了在第一个mini-batch(\(X^{\{1\}}\))上进行一步梯度下降法。

类似的工作,会在第二个mini-batch(\(X^{\left\{2 \right\}}\))上计算\(z^{[1]}\),然后用Batch归一化来计算\({\tilde{z}}^{[1]}\),所以Batch归一化的此步中,用第二个mini-batch(\(X^{\left\{2 \right\}}\))中的数据使\({\tilde{z}}^{[1]}\)归一化,这里的Batch归一化步骤也是如此,让来看看在第二个mini-batch(\(X^{\left\{2 \right\}}\))中的例子,在mini-batch上计算\(z^{[1]}\)的均值和方差,重新缩放的\(\beta\)和\(\gamma\)得到\(z^{[1]}\),等等。

然后在第三个mini-batch(\(X^{\left\{ 3 \right\}}\))上同样这样做,继续训练。

现在,想澄清此参数的一个细节。先前说过每层的参数是\(w^{[l]}\)和\(b^{[l]}\),还有\({\beta}^{[l]}\)和\(\gamma^{[l]}\),请注意计算\(z\)的方式如下,\(z^{[l]} =w^{[l]}a^{\left\lbrack l - 1 \right\rbrack} +b^{[l]}\),但Batch归一化做的是,它要看这个mini-batch,先将\(z^{[l]}\)归一化,结果为均值0和标准方差,再由\(\beta\)和\(\gamma\)重缩放,但这意味着,无论\(b^{[l]}\)的值是多少,都是要被减去的,因为在Batch归一化的过程中,要计算\(z^{[l]}\)的均值,再减去平均值,在此例中的mini-batch中增加任何常数,数值都不会改变,因为加上的任何常数都将会被均值减去所抵消。

所以,如果在使用Batch归一化,其实可以消除这个参数(\(b^{[l]}\)),或者也可以,暂时把它设置为0,那么,参数变成\(z^{[l]} = w^{[l]}a^{\left\lbrack l - 1 \right\rbrack}\),然后计算归一化的\(z^{[l]}\),\({\tilde{z}}^{[l]} = \gamma^{[l]}z^{[l]} + {\beta}^{[l]}\),最后会用参数\({\beta}^{[l]}\),以便决定\({\tilde{z}}^{[l]}\)的取值,这就是原因。

所以总结一下,因为Batch归一化超过了此层\(z^{[l]}\)的均值,\(b^{[l]}\)这个参数没有意义,所以,必须去掉它,由\({\beta}^{[l]}\)代替,这是个控制参数,会影响转移或偏置条件。

最后,请记住\(z^{[l]}\)的维数,因为在这个例子中,维数会是\((n^{[l]},1)\),\(b^{[l]}\)的尺寸为\((n^{[l]},1)\),如果是l层隐藏单元的数量,那\({\beta}^{[l]}\)和\(\gamma^{[l]}\)的维度也是\((n^{[l]},1)\),因为这是隐藏层的数量,有\(n^{[l]}\)隐藏单元,所以\({\beta}^{[l]}\)和\(\gamma^{[l]}\)用来将每个隐藏层的均值和方差缩放为网络想要的值。

让总结一下关于如何用Batch归一化来应用梯度下降法,假设在使用mini-batch梯度下降法,运行\(t=1\)到batch数量的for循环,会在mini-batch \(X^{\left\{ t\right\}}\)上应用正向prop,每个隐藏层都应用正向prop,用Batch归一化代替\(z^{[l]}\)为\({\tilde{z}}^{[l]}\)。接下来,它确保在这个mini-batch中,\(z\)值有归一化的均值和方差,归一化均值和方差后是\({\tilde{z}}^{[l]}\),然后,用反向prop计算\(dw^{[l]}\)和\(db^{[l]}\),及所有l层所有的参数,\(d{\beta}^{[l]}\)和\(d\gamma^{[l]}\)。尽管严格来说,因为要去掉\(b\),这部分其实已经去掉了。最后,更新这些参数:\(w^{[l]} = w^{[l]} -\text{αd}w^{[l]}\),和以前一样,\({\beta}^{[l]} = {\beta}^{[l]} - {αd}{\beta}^{[l]}\),对于\(\gamma\)也是如此\(\gamma^{[l]} = \gamma^{[l]} -{αd}\gamma^{[l]}\)。

如果已将梯度计算如下,就可以使用梯度下降法了,这就是写到这里的,但也适用于有MomentumRMSpropAdam的梯度下降法。与其使用梯度下降法更新mini-batch,可以使用这些其它算法来更新,也可以应用其它的一些优化算法来更新由Batch归一化添加到算法中的\(\beta\) 和\(\gamma\) 参数。

能学会如何从头开始应用Batch归一化,如果想的话。如果使用深度学习编程框架之一,之后会谈。如果希望可以直接调用别人的编程框架,这会使Batch归一化的使用变得很容易。

标签:mini,神经网络,batch,Batch,beta,gamma,归一化,Norm
From: https://www.cnblogs.com/oten/p/17999118

相关文章

  • 偏置归纳:神经网络的偏置归纳由什么构成?网络结构?权重参数值?—— 由网络结构和权重参数
    本文记录一个机器学习的一个理论知识:神经网络的偏置归纳由什么构成?网络结构?权重参数值?答案:由网络结构和权重参数值共同决定。参考:https://www.jianshu.com/p/e4c18f6538d2这个问题问的好像很小白,但是这个知识点其实很多人都是搞不大懂的。其实机器学习算法可以分为有参......
  • 用模糊神经网络控制器来实现一个控制系统
    问题的阐述:需要用模糊神经网络控制器来实现一个控制系统,使得输入变量e和ec的范围为[-2,2],并且达到目标误差emin=0.001。输入、输出矢量:输入矢量为e和ec,范围为[-2,2],即e,ec∈[-2,2]。输出矢量为控制器的输出,用来控制系统的行为。网络结构:模糊神经网络控制器由两个部分组成:模......
  • 卷积神经网络理解(3)
    1、定义LeNet是深度学习领域的一个经典卷积神经网络模型,由YannLeCun等人于1998年提出,被广泛应用于手写数字识别和其他图像识别任务。LeNet的网络结构相对简单,包含两个卷积层和三个全连接层,是卷积神经网络的基础。LeNet对于现代的图像识别任务来说可能过于简单,但其对于深度学习......
  • 卷积神经网络理解(二)
    1、卷积神经网络的特点卷积神经网络相对于普通神经网络在于以下四个特点:局部感知域:CNN的神经元只与输入数据的一小部分区域相连接,这使得CNN对数据的局部结构具有强大的敏感性,可以自动学习到图像的特征。参数共享:在CNN中,同一个卷积核(filter)在整个输入图像上滑动,共享权重和偏置......
  • 卷积神经网络详解+Python实现卷积神经网络Cifar10彩色图片分类
    原文链接:https://blog.csdn.net/master_hunter/article/details/133156758卷积神经网络相对于普通神经网络在于以下四个特点:局部感知域:CNN的神经元只与输入数据的一小部分区域相连接,这使得CNN对数据的局部结构具有强大的敏感性,可以自动学习到图像的特征。参数共享:在CNN中,同一个......
  • 文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
    一、介绍文本分类系统,使用Python作为主要开发语言,通过选取的中文文本数据集("体育类","财经类","房产类","家居类","教育类","科技类","时尚类","时政类","游戏类","娱乐类"),基于TensorFlow搭建CNN卷积神经网络算法模型,并进行多轮迭代训练最后得到一个识......
  • 机器学习从入门到放弃:卷积神经网络CNN(一)
    一、前言在上一篇中我们使用全连接网络,来构建我们的手写数字图片识别应用,取得了很好的效果。但是值得注意的是,在实验的最后,最后我们无论把LOSS优化到如何低,似乎都无法在测试数据集testdata中提高我们的识别准确度,你可以回头尝试全连接的网络连接,新增多几层layer,来尝试......
  • 神经网络优化篇:详解超参数调试的实践:Pandas VS Caviar(Hyperparameters tuning in prac
    超参数调试的实践如今的深度学习已经应用到许多不同的领域,某个应用领域的超参数设定,有可能通用于另一领域,不同的应用领域出现相互交融。比如,曾经看到过计算机视觉领域中涌现的巧妙方法,比如说Confonets或ResNets。它还成功应用于语音识别,还看到过最初起源于语音识别的想法成功应......
  • 神经网络优化篇:详解为超参数选择合适的范围(Using an appropriate scale to pick hyper
    为超参数选择合适的范围假设要选取隐藏单元的数量\(n^{[l]}\),假设,选取的取值范围是从50到100中某点,这种情况下,看到这条从50-100的数轴,可以随机在其取点,这是一个搜索特定超参数的很直观的方式。或者,如果要选取神经网络的层数,称之为字母\(L\),也许会选择层数为2到4中的某个值,接着顺......
  • 神经网络的反向传导的自动微分中前向模式和后向模式的适用情况
    神经网络的自动微分求导这里不做解释和介绍,自动微分求导中的前向模式和后向模式这里也不做解释和介绍。根据资料显示,如果一个神经网络的输入层维度为M,输出层维度为N,当M>N时,反向自动微分求导的后向模式计算效率高于前向模式,反之,如果M<N时,前向模式计算效率高于后向模式,下面给出自己......