首页 > 其他分享 >P4145 上帝造题的七分钟 2 / 花神游历各国 题解

P4145 上帝造题的七分钟 2 / 花神游历各国 题解

时间:2024-01-28 21:34:40浏览次数:40  
标签:curr int 题解 define return 七分钟 P4145 include const

题目链接:上帝造题的七分钟2/花神游历各国

差不多的题:[Ynoi Easy Round 2023] TEST_69

注意到对某个点来说暴力单点即为反复的:\(x=\sqrt{x}\),最终为 \(1\),根据 \(master\) 主定理可知,跟 \(veb\) 树分析差不多的,复杂度为:\(O(\log{\log{V_{max}}})\)。不懂的可以去学学 这篇文章

那么考虑到如果每个点都做有效的暴力修改,总复杂度也就 \(n\log{\log{V_{max}}}\),所以只需要解决无效修改的快速判断就行。很好想的是,\(1=\sqrt{1}\),这就是无效修改,抽象到区间上,一个区间快速判断是否不需要修改就是看这个区间是否全是 \(1\),随便咋做都行,比如维护区间最大值,判断是否是 \(1\),或者区间和是否等于区间长度。这里用区间最大值维护,判断如果不为 \(1\) 向下递归就行了,类似 \(O(n)\) 遍历修改有效位置。

参照代码
#include <bits/stdc++.h>

// #pragma GCC optimize(2)
// #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")

#define isPbdsFile

#ifdef isPbdsFile

#include <bits/extc++.h>

#else

#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope>

#endif

using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};

template <typename T>
int disc(T* a, int n)
{
    return unique(a + 1, a + n + 1) - (a + 1);
}

template <typename T>
T lowBit(T x)
{
    return x & -x;
}

template <typename T>
T Rand(T l, T r)
{
    static mt19937 Rand(time(nullptr));
    uniform_int_distribution<T> dis(l, r);
    return dis(Rand);
}

template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
    return (a % b + b) % b;
}

template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
    a %= c;
    T1 ans = 1;
    for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
    return modt(ans, c);
}

template <typename T>
void read(T& x)
{
    x = 0;
    T sign = 1;
    char ch = getchar();
    while (!isdigit(ch))
    {
        if (ch == '-')sign = -1;
        ch = getchar();
    }
    while (isdigit(ch))
    {
        x = (x << 3) + (x << 1) + (ch ^ 48);
        ch = getchar();
    }
    x *= sign;
}

template <typename T, typename... U>
void read(T& x, U&... y)
{
    read(x);
    read(y...);
}

template <typename T>
void write(T x)
{
    if (typeid(x) == typeid(char))return;
    if (x < 0)x = -x, putchar('-');
    if (x > 9)write(x / 10);
    putchar(x % 10 ^ 48);
}

template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
    write(x), putchar(c);
    write(c, y...);
}


template <typename T11, typename T22, typename T33>
struct T3
{
    T11 one;
    T22 tow;
    T33 three;

    bool operator<(const T3 other) const
    {
        if (one == other.one)
        {
            if (tow == other.tow)return three < other.three;
            return tow < other.tow;
        }
        return one < other.one;
    }

    T3() { one = tow = three = 0; }

    T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
    {
    }
};

template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
    if (x < y)x = y;
}

template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
    if (x > y)x = y;
}

constexpr int N = 1e5 + 10;

struct Node
{
    ll mx, sum;
} node[N << 2];

#define mx(x) node[x].mx
#define sum(x) node[x].sum

inline void push_up(const int curr)
{
    mx(curr) = max(mx(ls(curr)),mx(rs(curr)));
    sum(curr) = sum(ls(curr)) + sum(rs(curr));
}

int n, q;
ll a[N];

inline void build(const int curr = 1, const int l = 1, const int r = n)
{
    const int mid = l + r >> 1;
    if (l == r)
    {
        sum(curr) = mx(curr) = a[l];
        return;
    }
    build(ls(curr), l, mid);
    build(rs(curr), mid + 1, r);
    push_up(curr);
}

inline void update(const int curr, const int l, const int r, const int s = 1, const int e = n)
{
    if (mx(curr) == 1)return;
    const int mid = s + e >> 1;
    if (s == e)
    {
        mx(curr) = sum(curr) = sqrt(sum(curr));
        return;
    }
    if (l <= mid)update(ls(curr), l, r, s, mid);
    if (r > mid)update(rs(curr), l, r, mid + 1, e);
    push_up(curr);
}

inline ll query(const int curr, const int l, const int r, const int s = 1, const int e = n)
{
    if (l <= s and e <= r)return sum(curr);
    const int mid = s + e >> 1;
    ll ans = 0;
    if (l <= mid)ans += query(ls(curr), l, r, s, mid);
    if (r > mid)ans += query(rs(curr), l, r, mid + 1, e);
    return ans;
}

inline void solve()
{
    cin >> n;
    forn(i, 1, n)cin >> a[i];
    build();
    cin >> q;
    while (q--)
    {
        int op, l, r;
        cin >> op >> l >> r;
        if (l > r)swap(l, r);
        if (op == 0)update(1, l, r);
        else cout << query(1, l, r) << endl;
    }
}

signed int main()
{
    // MyFile
    Spider
    //------------------------------------------------------
    // clock_t start = clock();
    int test = 1;
    //    read(test);
    // cin >> test;
    forn(i, 1, test)solve();
    //    while (cin >> n, n)solve();
    //    while (cin >> test)solve();
    // clock_t end = clock();
    // cerr << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;
}

\[时间复杂度上界为:\ O(n\log{\log{V_{max}}}+q\log{n}) \]

标签:curr,int,题解,define,return,七分钟,P4145,include,const
From: https://www.cnblogs.com/Athanasy/p/17993438

相关文章

  • 洛谷题解-[ARC001B] リモコン
    https://www.luogu.com.cn/problem/AT_arc001_2题目描述 输入格式无输出格式无题意翻译题目描述:高桥君要调整空调的设定温度。现在的设定温度是A度,而他想调到B度。空调遥控器按一次可以:上调或下调1度上调或下调5度上调或下调10度高桥君想求出从A调到B度的最小......
  • P1197 [JSOI2008] 星球大战 题解
    P1197[JSOI2008]星球大战题解题目链接P1197[JSOI2008]星球大战简要思路看完题目的第一印象是——连通性。图论中判断连通性很容易想到并查集,但是并查集只支持合并和查询,并不支持删除,怎么办呢?考虑逆向思维,把删点的过程倒过来,看成加点和连边,那么此题就可以非常方便的用并......
  • 洛谷题解-P1938 [USACO09NOV] Job Hunt S
    https://www.luogu.com.cn/problem/P1938题目描述Bessieisrunningoutofmoneyandissearchingforjobs.FarmerJohnknowsthisandwantsthecowstotravelaroundsohehasimposedarulethathiscowscanonlymakeD(1<=D<=1,000)dollarsinac......
  • ATtokiomarine2020E O(rand) 题解
    题目链接点击打开链接题目解法首先,\(S\)一定要是\(T\)的子集先筛出符合条件的\(a_i\),即满足\(S\subseteqa_i\subseteqT\)令\(dif\)为\(T-S\),定义数\(x\)覆盖第\(y\)位为二进制下\(x\)的第\(y\)位为\(1\)现在的问题变成了找到大小\(\lek\)的\(\{a_i\}......
  • 洛谷题解-P2888 [USACO07NOV] Cow Hurdles S (Floyd)
    https://www.luogu.com.cn/problem/P2888题目描述FarmerJohnwantsthecowstoprepareforthecountyjumpingcompetition,soBessieandthegangarepracticingjumpingoverhurdles.Theyaregettingtired,though,sotheywanttobeabletouseaslittleene......
  • ABC338 F Negative Traveling Salesman 题解
    QuestionABC338FNegativeTravelingSalesman给出一个\(N\)个点\(M\)条边的有向图,边权可能为负数,但不可能有负环每经过一条边就要加上这条边的代价求,一条路径经过所有的点,并且要求总代价最小Solution观察到\(N\le20\)自然而然想到状压因为多次经过一条边的代价是......
  • CF1423G Growing flowers题解
    考虑每种颜色的贡献,用总数\(n-k+1\)减去没有贡献到的(极长连续段长度为\(len\)时),贡献为\(\max(len-k+1,0)\),所以考虑用\(\text{ODT}\)维护所有颜色的连续段。具体的,维护一个大的\(ODT\)存储所有连续段,再对每个颜色存储自己的连续段,用\(\text{BIT}\)维护每个长度的极长......
  • ABC338 D Island Tour 题解
    Question有\(n\)座海岛由\(n\)条桥连着,第\(i\)座桥连接第\(i\)和\(i+1\)座海岛,第\(n\)座桥连接第\(n\)和\(1\)座海盗有一条长度为\(m\)的旅游路线,第\(X_i\)表示依次到达的岛屿现在需要切断一条桥,求总旅游路线最小值Solution显然,从第\(X_{i-1}\)到\(X_......
  • ABC338 E Chords 题解
    Question一个圆上有\(2N\)个点均匀分布,给出\(N\)条线,每条线连接两个顶点问,有没有两条线相交Solution也算一个比较典的题目考虑到这种两两配对,配对中有没有交错关系的可以考虑异或哈希因为一个数异或两次等于它本身,所以我们可以用异或来实现一个“撤销”操作我们当我......
  • UVA10852 的题解
    UVA10852的题解题目大意给定自然数\(n(100\leqn\leq10000)\),寻找质数\(x\len\),使得\(p\timesx\leqn<(p+1)\timesx\)且\(n-p\timesx\)最大。思路不难发现,\(p\)其实就是$\left\lfloor\frac{n}{x}\right\rfloor$,所以,我们只要找到对应的\(x\),\(p\)的只就......