学者们开发了各种复杂性度量来比较时间序列并区分规则(例如,周期),混沌和随机行为。提出了加权排列熵概念,其是一个定义简单的复杂性度量,可以很容易地计算任何类型的时间序列,无论是规则的,混沌的,嘈杂的,还是基于现实的时间序列。(matlab代码获取:https://mbd.pub/o/bread/mbd-ZZmbm5pv)
参考文献:
Fadlallah B , Chen B , Keil A ,et al.Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information[J].Physical Review E Statistical Nonlinear & Soft Matter Physics, 2013, 87(2):022911.DOI:10.1103/PhysRevE.87.022911.
包括:
加权排列熵(Weighted Permutation Entropy),
多尺度加权排列熵(Multiscale Weighted Permutation Entropy),
层次加权排列熵(Hierarchical Weighted Permutation Entropy),
复合多尺度加权排列熵(composite multiscale Weighted Permutation entropy),
精细复合多尺度加权排列熵(refined composite multiscale Weighted Permutation entropy),
时移多尺度加权排列熵(time-shift multiscale Weighted Permutation entropy)
标签:加权,Weighted,排列,Entropy,Matlab,Permutation,entropy From: https://www.cnblogs.com/huakaifugui/p/17968515