首页 > 其他分享 >hadoop和spark

hadoop和spark

时间:2024-01-11 10:37:44浏览次数:30  
标签:Hadoop hadoop API 内存 计算 数据处理 spark Spark

Spark和Hadoop是大数据处理领域两个重要的开源框架,它们之间既有紧密的联系也有显著的区别。

联系:

  1. 生态兼容:Spark可以无缝运行在Hadoop之上,利用Hadoop Distributed File System (HDFS) 进行数据存储,并且可以通过YARN(Yet Another Resource Negotiator)进行资源调度和管理。这意味着Spark可以直接访问存放在Hadoop上的大规模数据集。

  2. 数据处理流程:尽管Spark提供了比MapReduce更快、更灵活的数据处理模型,但当涉及到大数据生态系统时,Spark可以作为Hadoop MapReduce的替代或补充方案,用于复杂的数据分析和处理任务。

  3. 互为补充:Hadoop在大数据存储方面具有优势,而Spark则专注于高性能计算,提供内存计算能力,支持批处理、交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(MLlib)和图计算(GraphX)等多种计算范式。

区别:

  1. 计算模型:Hadoop MapReduce采用磁盘读写密集型的迭代计算模型,每个阶段间有明显的I/O瓶颈;而Spark基于内存计算,中间结果能够保存在内存中,从而实现更高的性能和更低延迟。

  2. 速度与效率:Spark由于其RDD(Resilient Distributed Datasets)和内存计算机制,在很多情况下执行速度远超MapReduce,尤其对于需要多次迭代或交互式查询的工作负载。

  3. 功能定位:Hadoop更多地被看作是一个大数据基础设施,负责数据的分布式存储和离线批处理计算;而Spark则是一个更加全面且高级的应用层计算框架,不仅限于批处理,还能应对实时流处理和交互式查询等多样化需求。

  4. 架构独立性:虽然Spark通常与Hadoop结合使用,但它并不依赖于Hadoop的所有组件,Spark也可以独立部署并与其他存储系统如Cassandra、Amazon S3等配合工作。

spark生态:

Apache Spark 生态系统是一个围绕Spark核心计算框架构建的集成软件栈,旨在为大规模数据处理提供全面、高效和灵活的解决方案。以下是Spark生态系统中主要组件的概述:

  1. Spark Core:

    • 这是Spark的基础,提供了分布式任务调度、内存管理和故障恢复机制。它支持RDD(弹性分布式数据集)模型,允许开发者在集群上以并行和容错的方式处理数据。
  2. Spark SQL (Spark Structured Processing):

    • 提供了结构化数据处理能力,可以无缝整合SQL查询与Spark编程模型,并支持DataFrame和Dataset API。同时包含了对Hive Metastore和其他外部数据源的支持。
  3. Spark Streaming:

    • 实现了实时流式数据处理,通过将实时数据流划分为微小批次并在Spark引擎上进行处理来实现近似实时分析。
  4. MLlib:

    • 是Spark的机器学习库,包含了一系列算法、实用工具以及管道API,使得用户能够在大规模数据集上进行机器学习任务,如分类、回归、聚类和协同过滤等。
  5. GraphX:

    • 用于图形处理和图计算,提供了一套API用于创建、操作和查询图形数据结构,以及执行迭代图算法。
  6. SparkR 和 PySpark:

    • 分别是针对R语言和Python语言用户的接口,允许这些语言的使用者利用Spark进行分布式计算。
  7. Spark on Kubernetes 或 Spark on YARN:

    • 提供了Spark在不同资源管理器上的部署方式,Kubernetes和YARN都是用来在集群上管理容器化应用和分配资源的平台。
  8. 其他周边项目和工具:

    • Spark Notebook(例如Zeppelin或Jupyter with pyspark kernel):交互式数据分析环境。
    • Spark Thrift Server:使传统BI工具可以通过JDBC/ODBC接口访问Spark SQL的数据表。
    • Spark DataFrame API 对多种数据源的连接器(如Parquet, JDBC, Kafka等)。

标签:Hadoop,hadoop,API,内存,计算,数据处理,spark,Spark
From: https://www.cnblogs.com/syhxx/p/17957984

相关文章

  • 《PySpark大数据分析实战》-12.Spark on YARN配置Spark运行在YARN上
    ......
  • Spark四大特点
    ApacheSpark是一个开源的分布式计算框架,拥有四大显著特点:1.**速度快**:Spark基于内存的运算效率要快100倍以上,基于硬盘的运算效率也要快10倍以上。其先进的DAG调度程序、查询优化程序和物理执行引擎,使得Spark能高效处理数据流。2.**易用性**:Spark支持Java、Python、Scala及R语......
  • Spark 框架模块和Spark的运行模式 -
    整个Spark框架模块包含:SparkCore、SparkSQL、SparkStreaming、SparkGraphX、SparkMLlib,而后四项的能力都是建立在核心引擎之上SparkCore:Spark的核心,Spark核心功能均由SparkCore模块提供,是Spark运行的基础。SparkCore以RDD为数据抽象,提供Python、Java、Scala、R语......
  • 《PySpark大数据分析实战》-11.Spark on YARN模式安装Hadoop
    ......
  • Hadoop 的 ResourceManager进程占用 CPU 100% 问题排查过程
    1.top命令查看进程占用CPU情况top2.查找该进程号(22054)对应的服务方式一:top命令输入后,再按键盘中的“c”字母即可查看方式二:使用:ps-ef|grepPID命令查看ps-ef|grep220543.找到该进程中占用CPU最高的线程top-Hp220544.将线程的ID转换为16进制(用于排查、匹......
  • 《PySpark大数据分析实战》-10.独立集群模式的代码运行
    ......
  • 《PySpark大数据分析实战》-09.Spark独立集群安装
    ......
  • Hadoop之mapreduce参数大全-1
    1.设置Map/Reduce任务允许使用的最大虚拟内存大小mapred.task.maxvmem是MapReduce的一个配置参数,用于指定每个Map/Reduce任务允许使用的最大虚拟内存大小(以字节为单位)。如果一个任务使用的虚拟内存超过了此参数指定的值,则任务会被认为是失败的,并且MapReduce集群会尝试重新分配任......
  • Hadoop(3.3.4)-HDFS操作
    ApacheHadoop3.3.4–Overview01.appendToFilehadoopfs-appendToFilelocalfile/user/hadoop/hadoopfilehadoopfs-appendToFilelocalfile1localfile2/user/hadoop/hadoopfilehadoopfs-appendToFilelocalfilehdfs://nn.example.com/hadoop/hadoopfilehadoop......
  • Hadoop之mapreduce参数大全-2
    26.指定在Reduce任务在shuffle阶段的网络重试之间的最大延迟时间mapreduce.reduce.shuffle.retry-delay.max.ms是ApacheHadoopMapReduce任务配置中的一个属性,用于指定在Reduce任务在shuffle阶段的网络重试之间的最大延迟时间(以毫秒为单位)。在MapReduce任务中,Reduce任务在shuff......