首页 > 其他分享 >门把手⭐魔法少女:新篇章!大混乱?鏖战微分方程~与Wronsky的日与夜

门把手⭐魔法少女:新篇章!大混乱?鏖战微分方程~与Wronsky的日与夜

时间:2023-12-29 16:22:53浏览次数:34  
标签:bf 新篇章 int dfrac 线性 微分方程 Wronsky 门把手 lambda

什么,LaTeX 炸了?都是 cnblogs 的锅!!!

\[\newcommand{\d}{\mathrm d} \newcommand{\scr}{\mathscr} \newcommand{\bf}{\mathbf} \]

忍不了,一拳把微分方程干爆!!!

I.一些非线性微分方程的解法

参数分离微分方程

可写成 \(p(x)\d x=q(y)\d y\) 的方程可以在两侧同时积分,得到 \(P(x)=Q(y)+C\) 的式子。

可转为参数分离方程的方程

\[y'=f(\Gamma) \]

其中 \(\Gamma\) 是一个由 \(x,y\) 组成的较为简单的式子。

由 \(\Gamma\) 本身的性质,可以有 \(\Gamma'=F(y',\Gamma)\)。然后再代入 \(y'=f(\Gamma)\),进而得到 \(\Gamma'=G(\Gamma)\) 的参数分离式。

常见的 \(\Gamma\) 有:\(\dfrac yx\)(\(\Gamma'=\dfrac{y'-\Gamma}x\));\(ax+by+c\)(\(\Gamma'=a+y'\));\(\dfrac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2}\)(分有无交点处理)

II.一阶线性 ODE

一阶齐次线性 ODE

\[y'+a(x)y=0 \\\ln|y|=C_0-\int_{x_0}^xa(t)\d t \\y=\pm e^{C_0}e^{-\int_{x_0}^xa(t)\d t}&(通解) \\y=Ce^{-\int_{x_0}^xa(t)\d t}&(全解,包含特解 C=0) \\其中,x_0可任意取值 \]

初值问题

若确定 \((x_0,y_0)\) 在函数图像上,则上式变为 \(y=y_0e^{-\int_{x_0}^xa(t)\d t}\)。

一阶线性 ODE

常数变易法

\[y'+a(x)y=f(x) \\y=C(x)y_0 \\y'=C(x)(-a(x)y_0)+C'(x)y_0 \\C(x)(-a(x)y_0)+C'(x)y_0+a(x)C(x)y_0=f(x) \\C'(x)=f(x)e^{\int_{x_0}^xa(t)\d t} \\C(x)=C+\int_{x_0}^xf(s)e^{\int_{x_0}^xa(t)\d t}\d s \\y=Ce^{-\int_{x_0}^xa(t)\d t}+e^{-\int_{x_0}^xa(t)\d t}\int_{x_0}^xf(s)e^{\int_{x_0}^xa(t)\d t}\d s \]

积分因子法

令 \(A(x)=\int_{x_0}^xf(t)\d t\)。

\[y'+a(x)y=f(x) \\y'e^{A(x)}+a(x)ye^{A(x)}=f(x)e^{A(x)} \\(ye^{A(x)})'=f(x)e^{A(x)} \\y=Ce^{-A(x)}+e^{-A(x)}\int_{x_0}^xf(t)e^{A(t)}\d t \]

要点:寻找合适的因子,凑出全微分的形式。

而这个因子不好找。

初值问题

\[y=y_0e^{-\int_{x_0}^xa(t)\d t}+e^{-\int_{x_0}^xa(t)\d t}\int_{x_0}^xf(s)e^{\int_{x_0}^xa(t)\d t}\d s \]

III.一阶线性微分方程组

积分因子法

\[\bf y=A(x)\bf y'+\bf b(x) \]

直接使用积分因子法,得到

\[e^{-A(x)}\bf y-e^{-A(x)}A(x)\bf y'=e^{-A(x)}\bf b(x) \\(e^{-A(x)}\bf y)'=e^{-A(x)}\bf b(x) \\\bf y=e^{A(x)}\bf C+\int_{x_0}^xe^{-A(t)}\bf b(t)\d t \]

什么是矩阵 \(\exp\)?

\[\exp(A)=\sum_i\dfrac{A^i}{i!} \]

\(\exp(A)\) 和 \(A\) 是对易子。

由 Leibniz 乘法导数公式,\((A(x)\bf b(x))'=A(x)'\bf b(x)+A(x)\bf b'(x)\)。

上式的问题在于 \(\exp(A)\) 的计算。

若 \(A\) 可对角化(\(A=P\Lambda P^{-1}\)),则 \(A^i=P\Lambda^iP^{-1}\),于是 \(\exp(A)=P\exp(\Lambda)P^{-1}\),对角矩阵的 \(\exp\) 易计算。

否则,\(A\) 可 Jordan 化(\(A=PJP^{-1}\)),计算 \(\exp(J)\)。

\(J=\Lambda+U\),其中 \(\Lambda\) 是对角阵、\(U\) 是主对角线上方对角线上的 \(1\) 阵。

易验证 \(\Lambda,U\) 是对易子,于是 \(e^{\Lambda+U}=e^{\Lambda}e^U\)。\(e^U\) 在 \(n\) 次幂内收敛。

积分因子法因为 Jordan 化太困难(要求出 \(P\) 阵不好手算)、\(U\) 阵还要算幂次,不太适合考试时使用。

常数变易法

如果,我终于寻到那线性无关的解

考虑齐次方程组 \(\bf y'=A(x)\bf y\)。

假如 可以寻找线性无关的 \(n\) 个解 \(U(x)=\begin{bmatrix}\bf y_1&\bf y_2&\dots&\bf y_n\end{bmatrix}\),

那么 \(U(x)'=A(x)U(x)\)

于是考虑 \(\bf y'=A(x)\bf y+\bf f(x)\)

那么令 \(\bf y(x)=U(x)\bf C(x)\)

于是 \(\bf C(x)=U(x)^{-1}\bf y(x)\)。

于是 \(\bf y(x)=U(x)\int_{x_0}^xU^{-1}(t)\bf f(t)\d t+U(x)\bf C_0\)。

那么,我终于寻到那方程的初值

在上述前提下,如果 \(\bf y_1,\bf y_2\) 是 \(\bf y(x)=A(x)\bf y'(x)+\bf f(x)\) 的解,且 \(\bf y_1(x_0)=\bf y_2(x_0)\),

那么 \(\bf y_0=\bf y_1-\bf y_2\) 是 \(\bf y(x)=A(x)\bf y'(x)\) 的解,且 \(\bf y_0(x_0)=\bf 0\),

\(\bf y_0=U(x)\bf C_0\),代入 \(x_0\) 得到 \(\bf C_0=\bf 0\),

则 \(\bf y_0=\bf 0\),则 \(\bf y_1=\bf y_2\)。

但是,我何从觅求那线性无关的解

Liouville 定理:如果 \(U(x)=\begin{bmatrix}\bf y_1&\bf y_2&\dots&\bf y_n\end{bmatrix}\) 线性无关,那么 \([\det U(x)]'=\tr A(x)\det U(x)\)。

证明:对 \(\det U(x)\) 展成积的交错和形式,然后用 Leibniz 乘积公式可得。

解得 \(\det U(x)=\det U(x_0)e^{\int_{x_0}^x\tr A(t)\d t}\)。

于是 \(\det U(x)\) 一处为零则处处为零。也即,\(\det U(x)=0\Leftrightarrow\det U(x_0)=0\)。

\(W(x)=\det U(x)\),称作 Wronsky 行列式。

仿佛,我已经寻到了方程的初值

若 \(A(x)\) 连续,则 \(\forall(x_0,\bf y_0\),初值问题 \(\bf y(x_0)=\bf y_0\) 都有唯一解。【证明需要一致连续知识】

于是在 \(x_0\) 处任取一组线性无关向量(不妨直接令 \(U(x_0)=I_n\)),然后根据 \(U(x_0)\) 推出唯一的 \(U(x)\),上述分析成立。

刹那,时间反转吧,你是美丽的!

上述分析倒过来即可。

IV.一阶常系数线性微分方程组

变系数 ODE 方程组并非凡人可以染指的俗物,它是不容置喙的神域!!!

一阶常系数齐次线性微分方程组

假设其有 \(e^{\lambda x}\bf C\) 的解,则代入得应有 \(A\bf C=\lambda\bf C\),即 \(\lambda\) 是特征根、\(\bf C\) 是特征向量。

  • 若有 \(n\) 个线性无关特征向量 \(\bf C_1,\dots,\bf C_n\),则 \(e^{\lambda_1x}\bf C_1,\dots,e^{\lambda_n}\bf C_2\) 的线性组合即为方程通解。

  • 若特征向量数目小于 \(n\),需要求广义特征向量。依下法求广义特征向量:

    • 令 \(\lambda\) 是 \(k\) 重特征值,\(\bf C_0=\bf 0\),\(\bf C_i\) 为 \((A-\lambda I)\bf C_i=\bf C_{i-1}\) 的唯一解,\(\bf C_1,\dots,\bf C_k\) 称为广义特征向量;

      令 \(\bf y_i=e^{\lambda x}\sum\limits_{j=1}^k\dfrac{x^{j-1}}{(j-1)!}(A-\lambda I)^{j-1}\bf C_i\),则全体 \(\bf y_i\) 为线性无关解。

成对出现的复特征根 \(\alpha\pm i\beta\) 意味着成对出现的复特征向量,意味着成对出现的复解,分别取出实部和虚部即可。

\[e^{ix}=\cos x+i\sin x \]

一阶常系数非齐次线性微分方程组

把非齐次项扔到(广义)特征向量基底下展开即可。

\[\bf y(x)=A\bf y(x)+\bf f(x) \\\bf y(x):=\sum c_i(x)\bf C_i \\\bf f(x)=\sum d_i(x)\bf C_i \\\sum c_i'(x)\bf C_i=\sum\lambda_ic_i(x)\bf C_i+\sum d_i(x)\bf C_i \]

对于向量的每一位分开解上述一坨即可。

V.高阶常系数线性微分方程

可以简单转成一阶常系数线性微分方程组。

也可以使用常数变易法。

  • 常数变易法:由一组解推知另一组线性无关解。

高阶常系数齐次线性微分方程

设解为 \(e^{\lambda x}\)。解特征方程即可。

如果有重根?针对重根进行常数变易分析后,会发现 \(k\) 重根对应 \(e^{\lambda x}\),\(xe^{\lambda x},\dots,x^{k-1}e^{\lambda x}\)。

高阶常系数非齐次线性微分方程

常数变易?可能求起来较为困难。

比较系数法:若 \(\lambda\) 是特征方程的 \(k\in[0,n]\) 重根,则方程有形如 \(x^kQ(x)e^{\lambda x}\) 的解。

VI.其它场合

  • 如果不含 \(y\),则令 \(p=y'\) 然后解 \(p\) 的 ODE 即可。
  • 如果不含 \(x\),则令 \(p(y)=y'\) 然后解 \(p\) 关于 \(y\) 的 ODE 即可(\(\dfrac\d{\d x}=p\dfrac\d{\d y}\))

可因式分解的方程:

\[y''-3y'+2y=x^2 \\(\dfrac\d{\d x}-2)(\dfrac\d{\d x}-1)y=x^2 \\u=(\dfrac\d{\d x}-1)y,则 (\dfrac\d{\d x}-2)u=x^2 解得 u,然后 u 再解 y \]

上述算法成立的前提是微分与常数的加法、乘法交换律。

因此,常系数线性微分方程可以分解为一阶常系数线性微分方程的组合。

非常系数的线性微分方程:微分与变量之间没有交换律,因此不能直接十字相乘因式分解,需要待定系数。

\(\sum a_ix^iy^{(i)}=f(x)\) (Euler 方程)是可以待定 \(\prod(x\dfrac\d{\d x}+\alpha_i)y=f(x)\) 的,因为 \(x^k\dfrac{\d^k}{\d x^k}=(\dfrac\d{\d t})^{\underline k}\),其中 \(t=\ln x\)。

或者,直接换元 \(t=\ln x\) 然后解关于 \(t\) 的线性方程亦可。

还是不会?随机试一些换元,直到可解!

  • \(p=xy/\dfrac1y/x^2y/xy^2/x^2y^2/\dfrac1{xy}\)……

还是不会?那就开摆!

忍不了,一拳被微分方程干爆!

标签:bf,新篇章,int,dfrac,线性,微分方程,Wronsky,门把手,lambda
From: https://www.cnblogs.com/Troverld/p/17935142.html

相关文章

  • 监控易:与国产化服务器及网络设备厂家共创性能监控与故障预测新篇章
        在当今数字化时代,各行各业对国产化服务器和网络设备的需求日益增长。为了满足这一需求,监控易一直致力于提供最先进的IT性能监控和故障预测技术。近几年,监控易先后与国内各大服务器厂家和网络设备厂家达成战略合作,共同提升设备性能、增强服务质量,为用户带来更优质的体验......
  • 城市交通的智慧之眼:数据可视化重塑管理新篇章
    城市,这个充满活力的巨大生命体,每一条街道、每一个交叉路口都是它的血管和神经。随着城市化进程的加速,如何高效管理这个复杂的交通网络成为了一个巨大的挑战。幸运的是,在大数据和可视化技术的助力下,城市交通数据可视化正在成为我们驾驭城市脉搏的关键工具。 想象一下,站在一个巨......
  • 2.3T NPU强势登场!NXP i.MX 8M Plus开启工业新篇章,14纳米!
            更多产品详情以及购买咨询可添加如下客服人员微信 (即刻添加,马上咨询) 更多i.MX8MPlus产品资料可长按二维码识别下载如需选购,请登录创龙科技天猫旗舰店:tronlong.tmall.com!欢迎加入i.MX8MPlus技术交流群:1064661665......
  • Emu2:37亿参数开创多模态生成新篇章
    引言多模态任务在人工智能领域一直是极具挑战性的「技术高地」。智源研究院最近开源发布的新一代多模态基础模型Emu2,在这一领域取得了突破性进展。Emu2以其庞大的37亿参数规模和强大的多模态生成能力,为AI的多模态理解和生成开启了新的篇章。模型概述Emu2是一款大规模自回归生成式多......
  • 数字孪生技术赋能农业:农作物种植的新篇章
    随着科技的飞速发展,数字孪生技术逐渐渗透到各个领域,农业也不例外。农作物种植数字孪生系统,这一创新的科技应用,正在为农业带来革命性的变革。 山海鲸农作物种植演示通过数字孪生技术,基于真实农作物种植场景建模,最大程度还原了真实场景,能够为农作物种植相关的数字孪生项目提供有......
  • Autodesk 3ds Max 2024:专业3D建模软件,开启数字创意新篇章
    Autodesk3dsMax2024是一款全球知名的3D建模软件,广泛应用于影视、游戏、建筑等领域。这款软件由Autodesk公司开发,拥有强大的功能和工具,为用户提供了全面的3D建模解决方案。点击获取Autodesk3dsMax2024Autodesk3dsMax2024的界面友好且易于操作,用户可以快速上手。软件提......
  • EasyV+UE创造数字孪生可视化新篇章!
    众所周知,UE是UNREAL ENGINE(虚幻引擎)的简写,由Epic开发,是世界知名授权最广的游戏引擎之一。EasyV是一款数据可视化应用平台,用户通过EasyV可以更高效的实现数据可视化项目搭建,产品内有丰富的模版、海量的组件、简单的操作、多样的数据源等多种功能,是一款专业的数字孪生低代码可视化平......
  • 鸿海携手Porotech共同开启Micro LED新篇章 | 百能云芯
    近日,鸿海集团决定进一步强化其在MicroLED(微发光二极体)技术领域的实力。为此,鸿海宣布将与英国半导体企业Porotech展开战略合作,旨在共同开发MicroLED微显示器,并在AR(扩增实境)应用领域建立深度伙伴关系。鸿海的这一决策将整合该集团在半导体芯片制造、封装、IC驱动器、CMOS背板、模块......
  • 物联网(IoT)的实际应用:开启智能生活新篇章
    随着科技的飞速发展,物联网(IoT)已经逐渐sen透到我们生活的方方面面。作为连接万物、实现智能化的关键技术,物联网在实际应用中发挥着越来越重要的作用。首先,物联网在智能家居领域的应用最为广泛。通过将家中的各种设备(如空调、电视、照明、门锁等)连接到物联网,我们可以实现远程控制、语......
  • AI驱动泛娱乐,拥抱数字世界新篇章 | 游戏出海
    12月1日,VERYCLOUD睿鸿股份联合亚马逊云科技、iTechClub,在广州共同举办了“AI驱动泛娱乐:数字世界的新篇章”聚焦行业发展的专题沙龙,吸引了三七互娱、深蓝互动、深海游戏等企业中的产品、运维、技术管理人员到场。共同针对目前大家最关注的AI如何应用于泛娱乐产业,从行业最真实的情况......