首页 > 其他分享 >P5333 [JSOI2019] 神经网络

P5333 [JSOI2019] 神经网络

时间:2023-12-26 19:24:20浏览次数:51  
标签:P5333 JSOI2019 sum 一棵树 相邻 神经网络 DP

题面传送门

本来以为 \(m\) 这么小是 \(m\sum k_i\log k\) 的 NTT 的,写完发现一点不用(

首先我们发现,这样的图上面的一个哈密顿回路可以表示成原森林若干条链,每个点都在其中一条链上,且相邻两条链不在同一棵树上。

先跑一个 DP 把 \(f_{i,j}\) 表示用 \(j\) 条链覆盖 \(i\) 的方案数有几种跑出来,然后我们要处理在同一棵树上的链不相邻的限制。我们显然可以设计一个 DP:设 \(dp_{i,j}\) 表示考虑到了前 \(k\) 棵树,有 \(j\) 个相邻的方案数,但是这样子 DP 是 \(O((\sum k)^3)\) 的。

我们需要进行一个斥的容,具体的,先对于每棵树内部钦定若干条链在最终序列中放在一起,然后转移就可以直接合并,这样复杂度就是 \(O((\sum k)^2)\) 的。

注意对第一棵树特殊处理。

submission

标签:P5333,JSOI2019,sum,一棵树,相邻,神经网络,DP
From: https://www.cnblogs.com/275307894a/p/17929127.html

相关文章

  • 测试开发 | 深度学习的引擎:神经网络结构探析
    在人工智能领域中,深度学习的崛起被认为是推动技术革命的重要引擎之一。而深度学习的核心,则是建立在强大而灵活的神经网络结构之上。本文将深入探讨神经网络结构的关键组成部分,揭示其背后的原理和功能。神经网络的基本构成神经网络是深度学习的基石,其基本构成包括输入层、隐藏层和输......
  • 测试开发 | 卷积神经网络(CNN):图像识别的骨干
    卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)是深度学习领域中一种专门用于图像处理和识别的神经网络结构。由于其出色的性能和高效的特征提取能力,CNN在计算机视觉、医学图像分析等领域取得了巨大成功。本文将深入介绍卷积神经网络的原理、结构和应用,探讨它在图像处理中的不可......
  • 测试开发 | 循环神经网络(RNN):时序数据的魔法笔
    循环神经网络(RecurrentNeuralNetwork,简称RNN)是深度学习领域中一种专门用于处理时序数据的神经网络结构。相较于传统神经网络,RNN在处理序列数据时具有独特的优势,使其在自然语言处理、语音识别、股票预测等领域取得了显著的成功。本文将深入探讨循环神经网络的原理、结构和应用,揭示......
  • 从规则到神经网络:机器翻译技术的演化之路
    在本文中,我们深入探讨了机器翻译的历史、核心技术、特别是神经机器翻译(NMT)的发展,分析了模型的优化、挑战及其在不同领域的应用案例。同时,我们还提出了对未来机器翻译技术发展的展望和潜在的社会影响。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经......
  • 从规则到神经网络:机器翻译技术的演化之路
    在本文中,我们深入探讨了机器翻译的历史、核心技术、特别是神经机器翻译(NMT)的发展,分析了模型的优化、挑战及其在不同领域的应用案例。同时,我们还提出了对未来机器翻译技术发展的展望和潜在的社会影响。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发......
  • 神经网络优化篇:如何理解 dropout(Understanding Dropout)
    理解dropoutDropout可以随机删除网络中的神经单元,为什么可以通过正则化发挥如此大的作用呢?直观上理解:不要依赖于任何一个特征,因为该单元的输入可能随时被清除,因此该单元通过这种方式传播下去,并为单元的四个输入增加一点权重,通过传播所有权重,dropout将产生收缩权重的平方范数的......
  • 自然语言处理的文本生成:从随机生成到神经网络生成
    1.背景介绍自然语言处理(NLP)是人工智能领域的一个重要分支,其主要目标是让计算机理解、生成和处理人类语言。文本生成是NLP中的一个关键任务,旨在根据给定的输入生成连贯、合理的文本。在过去的几年里,随着深度学习和神经网络技术的发展,文本生成的方法也发生了巨大变化。本文将从随机生......
  • 基于pytorch写一个三层神经网络,训练数据并导出模型
     importtorchimporttorch.nnasnnimporttorch.optimasoptim#定义三层神经网络classThreeLayerNN(nn.Module):def__init__(self,input_size,hidden_size1,hidden_size2,output_size):super(ThreeLayerNN,self).__init__()self.fc1=......
  • 人工神经网络
    人工神经网络是一种模拟人脑神经网络的机器学习技术,它由输入层、输出层和中间层(也称为隐蔽层)组成若干个节点组成一个层,若干个层组成一个人工神经网络。若一个人工神经网络中只有一个计算层,则称为单层神经网络神经网络输入层的节点数需要与输入数据的维度相匹配,输出层的节点数要与......
  • 神经网络量化流程(第一讲TensorRT)
    TensorRT量化工具,支持PTQ和QAT量化基本流程:读取模型-》转化为IR进行图分析,做一些优化策略一、TensorRT量化模式TensorRT有两种量化模式:分别是implicitly以及explicitly量化,前者是隐式量化,在7.0及之前版本用的较多;后者显式量化在8.0版本后才完全支持,就是可以加载带有QDQ信息的模......