Trigonometric functions
标签(空格分隔): 三角函数
Unit right-angle triangle{#1}
\(\sin\theta=\frac{opposite \quad side}{hypotenuse}\)
\(\cos\theta=\frac{adjacent \quad side}{hypotenuse}\)
\(\tan\theta=\frac{opposite}{adjacent}\)
We can only define how many each trigonometric functions are with \(0\leq\theta\leq180^{\cdot}\).
unit circleUnit right-angle triangle[1]
convert degree to radian
Instead, it measures the length of the arc corresponding to the \(\theta\), and the radian \(\theta\) can work!
$180^{\circ}=2\pi $
1 radian = \(\frac{180^{\circ}}{2\pi}\)
we can analogize triangle to circle where \(\theta\) can up to \(360^{\circ}\) or even \(n\times 360^{\circ}\).
\(\sin\theta=\frac{opposite \quad side}{hypotenuse}=y\)
\(\cos\theta=\frac{adjacent \quad side}{hypotenuse}=x\)
\(\tan\theta=\frac{opposite}{adjacent}=\frac{y}{x}\)
signs of trigonometric functions
anchor demo ↩︎