题意
- 求 \(\sum_{i = 1}^{n} \lfloor \frac{n}{i} \rfloor\)
Sol
整除分块。
考虑 \(1 \to n\) 里面固然有很多算重的。
考虑去掉重复计算的东西,不难发现一个块内最大的数显然为 \(\lfloor \frac{n}{\lfloor \frac{n}{i} \rfloor} \rfloor\)。
实现是 \(trivial\) 的。
Code
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <array>
#define int long long
using namespace std;
#ifdef ONLINE_JUDGE
#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
char buf[1 << 23], *p1 = buf, *p2 = buf, ubuf[1 << 23], *u = ubuf;
#endif
int read() {
int p = 0, flg = 1;
char c = getchar();
while (c < '0' || c > '9') {
if (c == '-') flg = -1;
c = getchar();
}
while (c >= '0' && c <= '9') {
p = p * 10 + c - '0';
c = getchar();
}
return p * flg;
}
void write(int x) {
if (x < 0) {
x = -x;
putchar('-');
}
if (x > 9) {
write(x / 10);
}
putchar(x % 10 + '0');
}
void solve() {
int ans = 0;
int n = read(), res = 0;
for (int i = 1; i <= n; i = res + 1) {
res = n / (n / i);
ans += (n / i) * (res - i + 1);
}
write(ans), puts("");
}
signed main() {
int T = read();
while (T--) solve();
return 0;
}
标签:lfloor,frac,int,rfloor,include,UVA11526,getchar
From: https://www.cnblogs.com/cxqghzj/p/17844017.html