首页 > 其他分享 >神经网络入门篇:神经网络的梯度下降(Gradient descent for neural networks)

神经网络入门篇:神经网络的梯度下降(Gradient descent for neural networks)

时间:2023-11-20 10:02:38浏览次数:36  
标签:frac descent neural 公式 db 神经网络 dz dW

神经网络的梯度下降

  • 在这篇博客中,讲的是实现反向传播或者说梯度下降算法的方程组

单隐层神经网络会有\(W^{[1]}\),\(b^{[1]}\),\(W^{[2]}\),\(b^{[2]}\)这些参数,还有个\(n_x\)表示输入特征的个数,\(n^{[1]}\)表示隐藏单元个数,\(n^{[2]}\)表示输出单元个数。

在这个例子中,只介绍过的这种情况,那么参数:

矩阵\(W^{[1]}\)的维度就是(\(n^{[1]}, n^{[0]}\)),\(b^{[1]}\)就是\(n^{[1]}\)维向量,可以写成\((n^{[1]}, 1)\),就是一个的列向量。
矩阵\(W^{[2]}\)的维度就是(\(n^{[2]}, n^{[1]}\)),\(b^{[2]}\)的维度就是\((n^{[2]},1)\)维度。

还有一个神经网络的成本函数,假设在做二分类任务,那么的成本函数等于:

Cost function:

公式:

\(J(W^{[1]},b^{[1]},W^{[2]},b^{[2]}) = {\frac{1}{m}}\sum_{i=1}^mL(\hat{y}, y)\)

loss function和之前做logistic回归完全一样。

训练参数需要做梯度下降,在训练神经网络的时候,随机初始化参数很重要,而不是初始化成全零。当参数初始化成某些值后,每次梯度下降都会循环计算以下预测值:

\(\hat{y}^{(i)},(i=1,2,…,m)\)

公式1.28:

\(dW^{[1]} = \frac{dJ}{dW^{[1]}},db^{[1]} = \frac{dJ}{db^{[1]}}\)

公式1.29:

\({d}W^{[2]} = \frac{{dJ}}{dW^{[2]}},{d}b^{[2]} = \frac{dJ}{db^{[2]}}\)

其中

公式1.30:

\(W^{[1]}\implies{W^{[1]} - adW^{[1]}},b^{[1]}\implies{b^{[1]} -adb^{[1]}}\)

公式1.31:

\(W^{[2]}\implies{W^{[2]} - \alpha{\rm d}W^{[2]}},b^{[2]}\implies{b^{[2]} - \alpha{\rm d}b^{[2]}}\)

正向传播方程如下(之前讲过):

forward propagation

(1)
\(z^{[1]} = W^{[1]}x + b^{[1]}\)
(2)
\(a^{[1]} = \sigma(z^{[1]})\)
(3)
\(z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}\)
(4)
\(a^{[2]} = g^{[2]}(z^{[z]}) = \sigma(z^{[2]})\)

反向传播方程如下:

back propagation

公式1.32:

$ dz^{[2]} = A^{[2]} - Y , Y = \begin{bmatrix}y^{[1]} & y^{[2]} & \cdots & y^{[m]}\ \end{bmatrix} $

公式1.33:

$ dW^{[2]} = {\frac{1}{m}}dz{[2]}A $

公式1.34:

$ {\rm d}b^{[2]} = {\frac{1}{m}}np.sum({d}z^{[2]},axis=1,keepdims=True)$

公式1.35:

$ dz^{[1]} = \underbrace{W^{[2]T}{\rm d}z{[2]}}_{(n,m)}\quad\underbrace{{g{[1]}}{'}}_{activation ; function ; of ; hidden ; layer}\quad\underbrace{(z{[1]})}_{(n,m)} $

公式1.36:

\(dW^{[1]} = {\frac{1}{m}}dz^{[1]}x^{T}\)

公式1.37:

\({\underbrace{db^{[1]}}_{(n^{[1]},1)}} = {\frac{1}{m}}np.sum(dz^{[1]},axis=1,keepdims=True)\)

上述是反向传播的步骤,注:这些都是针对所有样本进行过向量化,\(Y\)是\(1×m\)的矩阵;这里np.sum是python的numpy命令,axis=1表示水平相加求和,keepdims是防止python输出那些古怪的秩数\((n,)\),加上这个确保阵矩阵\(db^{[2]}\)这个向量输出的维度为\((n,1)\)这样标准的形式。

目前为止,计算的都和Logistic回归十分相似,但当开始计算反向传播时,需要计算,是隐藏层函数的导数,输出在使用sigmoid函数进行二元分类。这里是进行逐个元素乘积,因为\(W^{[2]T}dz^{[2]}\)和\((z^{[1]})\)这两个都为\((n^{[1]},m)\)矩阵;

还有一种防止python输出奇怪的秩数,需要显式地调用reshapenp.sum输出结果写成矩阵形式。

以上就是正向传播的4个方程和反向传播的6个方程,这里是直接给出的。

标签:frac,descent,neural,公式,db,神经网络,dz,dW
From: https://www.cnblogs.com/oten/p/17843284.html

相关文章

  • 简单神经网络(py)
    1importnumpy2#激活函数库3importscipy.special45importmatplotlib.pyplot67#neutralnetworkclassdefinition8classneutralNetwork:9def__init__(self,inputnodes,hiddennodes,outputnodes,learningrate):10#定义各个......
  • c4w1_卷积神经网络
    卷积神经网络计算机视觉问题计算机视觉(computervision)是因深度学习而快速发展的领域之一,它存进了如自动驾驶、人脸识别等应用的发展,同时计算机视觉领域的发展还可以给其他领域提供思路。计算机视觉应用的实例:图片分类(识别是不是一只猫)、目标检测(检测途中汽车行人等)、图片风格......
  • c1w4_深层神经网络
    深层神经网络什么是深层神经网络?深层的神经网络(DeepL-layerneuralnetwork)就是包含了更多隐藏层的神经网络。从某种意义上来说,logisticregression可以称为一层的神经网络“1layerNN”。当计算神经网络的层数,通常将输出层计算在内,而输出层不算,有一个隐藏层,就是2layerNN,以......
  • 深度学习算法原理实现——自写神经网络识别mnist手写数字和训练模型
    代码来自:https://weread.qq.com/web/reader/33f32c90813ab71c6g018fffkd3d322001ad3d9446802347《python深度学习》fromtensorflow.keras.datasetsimportmnistfromtensorflow.kerasimportoptimizersimporttensorflowastfimportnumpyasnpclassNaiveDense:d......
  • Decoupling the Depth and Scope of Graph Neural Networks
    目录概符号说明Shadow-GNN代码ZengH.,ZhangM.,XiaY.,SrivastavaA.,MalevichA.,KannanR.,PrasannaV.,JinL.andChenR.Decouplingthedepthandscopeofgraphneuralnetworks.NIPS,2021.概为每个结点抽取一子图作为结点的代表,然后推理过程仅限定在子......
  • Python绘制神经网络模型的结构示意图的方法
      本文介绍基于Python语言,对神经网络模型的结构进行可视化绘图的方法。  最近需要进行神经网络结构模型的可视化绘图工作。查阅多种方法后,看到很多方法都比较麻烦,例如单纯利用graphviz模块,就需要手动用DOT语言进行图片描述,比较花时间;最终,发现利用第三方的ann_visualizer模块,可......
  • 神经网络中的量化与蒸馏
    前言 本文介绍了深度学习中精简模型的技术:量化和蒸馏。本文转载自DeepHubIMBA作者:Aadityaura仅用于学术分享,若侵权请联系删除欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。CV各大方向专栏与各个部署框架最全教程整理【......
  • python深度学习——一个简单的全连接神经网络,预测mnist手写数字
    代码来自《python深度学习》第二章:fromtensorflow.keras.datasetsimportmnistfromtensorflowimportkerasfromtensorflow.kerasimportlayers(train_images,train_labels),(test_images,test_labels)=mnist.load_data()print(train_images.shape)print(len(trai......
  • 不平衡数据集神经网络回归SMOTE、SMOGN算法:R语言代码
      本文介绍基于R语言中的UBL包,读取.csv格式的Excel表格文件,实现SMOTE算法与SMOGN算法,对机器学习、深度学习回归中,训练数据集不平衡的情况加以解决的具体方法。  在之前的文章SMOGN算法的Python实现:不平衡数据的深度学习回归中,我们介绍了基于Python语言中的smogn包,实现SMOGN算......
  • 机器学习——深度循环神经网络
    到目前为止,我们只讨论了具有一个单向隐藏层的循环神经网络。其中,隐变量和观测值与具体的函数形式的交互方式是相当随意的。只要交互类型建模具有足够的灵活性,这就不是一个大问题。然而,对一个单层来说,这可能具有相当的挑战性。之前在线性模型中,我们通过添加更多的层来解决这个......