隐圆问题的几种类型
在中考的一些题目中明明没有圆,却要构造出圆进行解答,这些问题是隐圆问题.
隐圆问题可以归纳为几种模型:定点定长,四点共圆,定角定线(直角所对的弦是直径、定弦定角、定角定中线、定角定角平分线、定角定高、定角定周长).
模型一 定点定长
模型解释
![image.png](https://cdn.nlark.com/yuque/0/2023/png/21447551/1699961228061-798d17d3-16b8-4019-85a0-594ce162c536.png#averageHue=%23fbf8f8&clientId=ued58e2de-86af-4&from=paste&height=118&id=uc3f35c49&originHeight=177&originWidth=183&originalType=binary&ratio=1.5&rotation=0&showTitle=false&size=7373&status=done&style=none&taskId=u4ee39438-e2a3-4a43-8bac-04c8f3c1e3d&title=&width=122) ![image.png](https://cdn.nlark.com/yuque/0/2023/png/21447551/1699961232124-8526ed64-313b-4f82-b9be-dadc95be1d00.png#averageHue=%23fdfafa&clientId=ued58e2de-86af-4&from=paste&height=124&id=ue5f4c11b&originHeight=186&originWidth=193&originalType=binary&ratio=1.5&rotation=0&showTitle=false&size=5795&status=done&style=none&taskId=ued8651c4-6b54-419f-83a6-e0f47008f8f&title=&width=128.66666666666666)
左图中,若点\(O\)是定点,\(OA=OB=OC\),则\(A\),\(B\),\(C\)在以点\(O\)为圆心的圆上;
右图中,若点\(O\)是定点,\(OA\)是定长\(r\),则动点\(A\)在以点\(O\)为圆心,半径为\(r\)的圆上.
例题详讲
例1 如图,点\(A\),\(B\)的坐标分别为\(A(4,0)\),\(B(0,4)\),\(C\)为坐标平面内一点,\(BC=2\),点\(M\)为线段\(AC\)的中点,连接\(OM\),\(OM\)的最大值为\(\underline{\quad \quad}\).
解析 \(\because C\)为坐标平面内一点,\(BC=2\),
(即动点\(C\)到定点\(B\)的距离等于定长\(2\),由圆的定义可得\(C\)的轨迹是圆)
\(\therefore\)点\(C\)的运动轨迹是在半径为\(2\)的\(⊙B\)上,
如图,取\(OD=OA=4\),连接\(OD\),
\(\because\)点\(M\)为线段\(AC\)的中点,\(\therefore OM\)是\(△ACD\)的中位线,
\(\therefore OM=\dfrac{1}{2} CD\),
\(\therefore OM\)最大值时,\(CD\)取最大值,此时\(D\)、\(B\)、\(C\)三点共线,
此时在\(Rt△OBD\)中\(B D=\sqrt{4^2+4^2}=4 \sqrt{2}\),
\(\therefore CD=2+4\sqrt{2}\),
\(\therefore OM\)的最大值是\(1+2\sqrt{2}\).
故答案为:\(1+2\sqrt{2}\).
例2 如图,在平行四边形\(ABCD\)中,\(AB=4\),\(AD=4\sqrt{3}\),\(\angle B=60^{\circ}\),点\(E\)在线段\(BC\)上一动点,连接\(AE\),将\(△ABE\)沿着\(AE\)翻折,得\(△AFE\),连接\(CF\)、\(DF\).则\(△CDF\)面积的最小值为\(\underline{\quad \quad}\).
解析 要求\(△CDF\)面积的最小值,而\(CD\)是固定的线段,故想到判定动点\(F\)的轨迹,求点\(F\)到直线\(CD\)的距离最小值.
\(\because\)将\(△ABE\)沿着\(AE\)翻折,得\(△AFE\),
\(\therefore AF=AB=4\),
(即动点\(F\)到定点\(A\)的距离等于定长\(4\),由圆的定义可得\(F\)的轨迹是圆;关于旋转或翻转的动点问题可考虑轨迹是圆)
\(\therefore\)点\(F\)在以点\(A\)为圆心,\(4\)为半径的圆上,
则点\(F\)到\(CD\)的距离最小值等于圆心\(A\)到\(CD\)的距离减去圆的半径\(4\),
如图,过点\(A\)作\(AH⊥CD\)于\(H\),
\(\because\)在\(Rt∆ADH\)中,\(∠ADC=∠ABC=60^{\circ}\),\(AD=4\sqrt{3}\),
\(\therefore AH=6\),
\(\therefore\)当点\(F\)在\(AH\)上时,\(FH\)有最小值\(=AH-AF=2\),
\(\therefore △CDF\)面积的最小值\(=\dfrac{1}{2}×4×2=4\),
故答案为:\(4\).
模型二 四点共圆
模型解释
左图中,若\(∠A+∠C=180^{\circ}\),则\(A\),\(B\),\(C\),\(D\)四点共圆;
右图中,若\(∠A=∠D\),则则\(A\),\(B\),\(C\),\(D\)四点共圆.
(这可尝试用反证法证明得到)
例题详讲
例1 如图,已知矩形\(ABCD\)中,\(AB=12\),\(BC=5\),点\(P\)是边\(CD\)上的一动点(不与\(C\),\(D\)重合),过\(P\)作\(PG⊥AB\)于点\(G\),过\(G\)作\(GM⊥AP\)于点\(M\),作\(GN⊥BP\)于点\(N\),连接\(MN\),则当\(MN\)取到最大值时,\(DP\)的长为\(\underline{\quad \quad}\) .
解析 \(\because GM⊥AP\),\(GN⊥BP\),
(四边形\(PMGN\)的一对内角互补,\(∠PNG+∠PMG=180^{\circ}\))
\(\therefore P\),\(M\),\(G\),\(N\)四点共圆,且\(PG=5\)是直径,
\(\therefore\) 弦\(MN\)的最大值为\(5\),
此时\(∠APB=90^{\circ}\),易得\(∠APD=∠GPB\),
又\(\because ∠D=∠PGB=90^{\circ}\),\(\therefore ∆ADP∼∆BGP\),
\(\therefore \dfrac{D P}{P G}=\dfrac{A D}{B G}\),\(\therefore \dfrac{D P}{5}=\dfrac{5}{12-D P}\),解得\(D P=6-\sqrt{11}\)或\(6-\sqrt{11}\).
例2 已知:在\(△ABC\)中,\(AB=AC=6\),\(∠B=30^{\circ}\),\(E\)为\(BC\)上一点,\(BE=2EC\),\(DE=DC\),\(∠ADC=60^{\circ}\),则\(AD\)的长\(\underline{\quad \quad}\).
解析 连接\(AE\),过点\(A\)作\(AH⊥BC\)于\(H\)点,
在\(Rt△ABH\)中,\(\because ∠B=30^{\circ}\),\(\therefore AH=\dfrac{1}{2} AB=3\),\(BH=3\sqrt{3}\),
根据等腰三角形性质可知\(CH=BH=3\sqrt{3}\),\(BC=6\sqrt{3}\),
\(\therefore C E=\dfrac{1}{3} B C=2 \sqrt{3}\),
\(\therefore HE=CH-CE=\sqrt{3}\),
在\(Rt△AHE\)中\(AE=2\sqrt{3}\),
所以\(AE=CE\),\(∠CAE=∠ACB=30^{\circ}\),
所以\(∠AEC=120^{\circ}\),\(∠ADC=60^{\circ}\), (四边形\(AECD\)对角互补)
\(\therefore\)点\(A\)、\(D\)、\(C\)、\(E\)四点共圆,
\(\therefore ∠ADE=∠ACE=30^{\circ}\),\(\therefore ∠CDE=∠ADC-∠ADE=30^{\circ}\).
\(\because DE=DC\),\(\therefore ∠DEC=75^{\circ}\).
\(\therefore ∠AED=120^{\circ}-75^{\circ}=45^{\circ}\).
过点\(A\)作\(AM⊥DE\)于\(M\)点,则\(A M=\dfrac{\sqrt{2}}{2} A E=\sqrt{6}\).
在\(Rt△AMD\)中\(AD=2AM=2\sqrt{6}\).
故答案为\(2\sqrt{6}\).
例3 如图,已知\(△ABC\)中,\(∠ACB=90^{\circ}\),\(AC=4\),\(BC=3\),\(∠CPB=∠A\),过点\(C\)作\(CP\)的垂线,与\(BP\)的延长线交于点\(Q\),则\(CQ\)的最大值为\(\underline{\quad \quad}\).
解析 \(\because CQ⊥CP\),\(\therefore ∠PCQ=∠ACB=90^{\circ}\),
\(\because ∠CPB=∠A\),\(\therefore △CPQ∽△CAB\),
\(\therefore \dfrac{P C}{A C}=\dfrac{Q C}{B C}\), \(\therefore \dfrac{P C}{4}=\dfrac{Q C}{3}\),\(\therefore Q C=\dfrac{3}{4} P C\),
\(\therefore\)当\(PC\)有最大值时,\(CQ\)有最大值,
\(\because ∠CPB=∠A\),\(\therefore\)点\(A\)、\(C\)、\(B\)、\(P\)四点共圆,
若\(PC\)有最大值,则\(PC\)应为直径,
\(\because ∠ACB=90^{\circ}\),\(\therefore AB\)是圆的直径,
\(\therefore P C=A B=\sqrt{A C^2+B C^2}=5\),
\(\therefore QC\)的最大值为\(\dfrac{3}{4} \times 5=\dfrac{15}{4}\).
模型三 定角定线
定角定线包括了“直角所对的是直径”、“定弦定角”、“定角定中线”、“定角定平分线”、“定角定高”、“定角定周长”.
情况1 直角所对的弦是直径
模型解释
点\(A\),\(B\)是定点,动点\(C\)满足\(∠ACB=90^{\circ}\),则动点\(C\)的轨迹是以\(AB\)为直径的圆.
例题详讲
如图,正方形\(ABCD\)中,\(AB=2\),动点\(E\)从点\(A\)出发向点\(D\)运动,同时动点\(F\)从点\(D\)出发向点\(C\)运动,点\(E\)、\(F\)运动的速度相同,当它们到达各自终点时停止运动,运动过程中线段\(AF\)、\(BE\)相交于点\(P\),则线段\(DP\)的最小值为\(\underline{\quad \quad}\).
解析 点\(D\)是定点,点\(P\)是动点,求线段\(DP\)的最小值则需要了解点\(P\)的轨迹.
\(\because\)动点\(F\),\(E\)的速度相同,\(\therefore DF=AE\),
又\(\because\)正方形\(ABCD\)中,\(AB=2\),\(\therefore AD=AB\),
在\(△ABE\)和\(△DAF\)中\(\left\{\begin{array}{l}
A B=A D \\
\angle B A E=\angle A D F \\
A E=D F
\end{array}\right.\),
\(\therefore △ABE≌△DAF\),\(\therefore ∠ABE=∠DAF\).
\(\because ∠ABE+∠BEA=90^{\circ}\),\(\therefore ∠FAD+∠BEA=90^{\circ}\),
\(\therefore ∠APB=90^{\circ}\),
\(\therefore\)点\(P\)的路径是一段以\(AB\)为直径的弧,
(线段\(DP\)的最小值转化为圆外一点到圆上点的距离最值问题)
设\(AB\)的中点为\(G\),连接\(DG\)交弧于点\(P\),此时\(DP\)的长度最小,
\(AG=BG=\dfrac{1}{2} AB=1\).
在\(Rt△BCG\)中\(D G=\sqrt{\mathrm{AG}^2+\mathrm{AD}^2}=\sqrt{1^2+2^2}=\sqrt{5}\),
\(\because PG=AG=1\),\(\therefore DP=DG-PG=\sqrt{5}-1\),即线段\(DP\)的最小值为\(\sqrt{5}-1\),
故答案为: \(\sqrt{5}-1\).
情况2 定弦定角
模型解释
定弦定角指的是一个三角形中有一组对角对边是定值;
比如上面两图中在\(△ABC\)中,\(∠A=α\),\(BC=m\)(\(α\),\(m\)是定值),
若\(B\),\(C\)是定点,\(A\)是动点,则动点\(A\)的轨迹是个圆\(\odot O\),圆心\(O\)在线段\(BC\)中垂线上且满足\(∠BOC=2α\)(\(α\)是锐角时)或\(∠BOC=180^{\circ}-2α\)(\(α\)是钝角时).
结论 圆\(O\)是\(∆ABC\)的外接圆,且半径为\(r\),则\(BC=2r \cdot \sin A\).
证明 当\(∠A\)是锐角时,作直径\(BD\),连接\(CD\),则\(∠BCD=90^{\circ}\),
在\(Rt∆BCD\)中,\(\sin D=\dfrac{B C}{B D}=\dfrac{B C}{2 r}\),
又\(∠A=∠D\),所以\(\sin A=\dfrac{B C}{2 r}\),即\(BC=2r \cdot \sin A\).
当\(∠A\)是直角或钝角也易证.
(这结论在定弦定角问题较易可得隐圆的半径)
例题详讲
例1 如图,已知四边形\(ABCD\)中,\(AD=2\),\(∠D=60^{\circ}\),\(∠B=45^{\circ}\),对角线\(AC⊥AD\),则\(BD\)的最大值为\(\underline{\quad \quad}\).
解析 在\(RtACD\)中,\(AC=AD \cdot \tan∠D=2\sqrt{3}\),
\(\because ∠ABC=45^{\circ}\),\(AC=2\sqrt{3}\), (\(∆ABE\)属于“定弦定角”三角形)
\(\therefore\)点\(B\)在\(∆ABE\)的外接圆\(\odot E\)上,
(\(BD\)的最大值等于点\(D\)到圆心的距离加上半径,故要确定圆的半径和圆心的位置)
\(\therefore BD\)的最大值为\(ED+AE\),
过点\(E\)作\(FE⊥AC\),\(EH\)垂直\(DA\)的延长线于点\(H\),
\(\because ∆ABF\)是等腰三角形,且\(AC=2\sqrt{3}\),
\(\therefore AE=\sqrt{6}\),\(EF=AH=1\),\(AF=EH=\sqrt{3}\),\(AE=2\),
\(\therefore E D=\sqrt{E H^2+H D^2}=\sqrt{3+9}=2 \sqrt{3}\),
\(\therefore BD\)的最大值为\(2\sqrt{3}+2\).
例2 如图,在平面直角坐标系中,等边\(△OAB\)的边\(OB\)在\(x\)轴正半轴上,点\(A(3,m)\),\(m>0\),点\(D\)、\(E\)分别从\(B\)、\(O\)以相同的速度向\(O\)、\(A\)运动,连接\(AD\)、\(BE\),交点为\(F\),\(M\)是\(y\)轴上一点,则\(FM\)的最小值是\(\underline{\quad \quad}\).
解析 显然点\(F\)是动点,我们了解它的轨迹更好思考问题.
如图,\(\because △OAB\)是等边三角形,\(\therefore ∠AOB=∠ABD=60^{\circ}\),\(OB=AB\),
\(\because\)点\(D\)、\(E\)分别从\(B\)、\(O\)以相同的速度向\(O\)、\(A\)运动,
\(\therefore BD=OE\),
在\(△OBE\)和\(△DAB\)中\(\left\{\begin{array}{l}
O E=B D \\
\angle B O E=\angle A B D=60^{\circ} \\
O B=A B
\end{array}\right.\),
\(\therefore △OBE≌△DAB(SAS)\),
\(\therefore ∠OBE=∠BAD\),
\(\therefore ∠ABE+∠BAD=∠ABE+∠OBE=∠ABO=60^{\circ}\),
\(\therefore ∠AFB=180^{\circ}-(∠ABE+∠BAD)=120^{\circ}\),
\(\because △AOB\)是等边三角形,\(A(3,m)\),\(\therefore AB=OB=2×3\),\(m=3\sqrt{3}\),
(\(△AFB\)属于“定弦定角”三角形)
\(\therefore\)动点\(F\)是经过点\(A\),\(B\),\(F\)的圆上的点,记圆心为\(O^{\prime}\), 连接\(O^{\prime}A\),\(O^{\prime}B\),
(\(M\)是\(y\)轴上一动点,\(FM\)的最小值等于圆心\(O^{\prime}\)到\(y\)轴的距离减去半径,即\(F M_{\min }^{\prime}=O^{\prime} M^{\prime}-O F^{\prime}\),故要确定圆心\(O^{\prime}\)的位置和圆半径)
设\(O^{\prime}(x,y)\),
\(\because ∠AFB=120^{\circ}\),\(\therefore ∠AO^{\prime}B=120^{\circ}\),
又\(\because O^{\prime}A=O^{\prime}B\),\(\therefore ∠ABO^{\prime}=30^{\circ}\),
\(\because ∠ABO=60^{\circ}\),\(\therefore ∠OBO^{\prime}=90^{\circ}\),
\(\therefore x=OB=6\),
过点\(O^{\prime}\)作\(O^{\prime} G⊥AB\),
\(\therefore\)圆的半径\(r=O^{\prime} B=\dfrac{G B}{\cos \angle A F O^{\prime}}=\dfrac{3}{\dfrac{\sqrt{3}}{2}}=2 \sqrt{3}\),
(利用模型解释中的结论\(O^{\prime} B=\dfrac{A B}{2 \sin \angle A F B}=\dfrac{6}{2 \times \dfrac{\sqrt{3}}{2}}=2 \sqrt{3}\))
\(\therefore y=2\sqrt{3}\),
\(\therefore O^{\prime}(6,2\sqrt{3})\),
\(\therefore FM\)的最小值为\(6-2\sqrt{3}\).
情况3 定角定中线
模型解释
定角定中线指的是:在\(∆ABC\)中,\(∠BAC=α\)的大小和中线\(AD\)的长度\(m\)是定值;
它可以利用倍长中线模型,将其转化为“定弦定角”模型.
转化思路大致如下:延长\(AD\)至\(E\),使得\(ED=AD\),连接\(BE\),易得\(∆ACD≅∆BDE\),
则\(∠ABE=2α\),\(AE=2m\)是定值,那\(∆ABE\)是属于“定弦定角”的三角形.
例题详讲
例1 如图,在\(∆ABC\)中,\(∠BAC=45^{\circ}\),\(D\)是\(BC\)边的中点,\(AD=2\),求\(∆ABC\)面积的最大值.
解析 延长AD至E,使DE=AD,连接BE,
由倍中线模型易得\(∆ACD≅∆BED\),
\(\therefore AE=2AD=4\),\(∠E=∠DAC\),
\(\therefore AC//BE\),\(\therefore ∠ABE=180^{\circ}-∠BAC=135^{\circ}\), (倍长中线模型的运用)
则\(△ABE\)是一个定弦定角三角形,
(把定角定中线的\(∆ABC\)问题转化为定弦定角\(△ABE\)问题)
\(S_{\triangle A C D}=S_{\triangle B E D}\), \(\therefore S_{\triangle A B C}=S_{\triangle A B E}\),
要\(△ABC\)的面积最大,只需\(△ABE\)的面积最大.
作\(△ABE\)的外接圆圆\(O\),连接\(OA\),\(OE\),过\(B\)作\(BH⊥AE\),连接\(OD\)并延长,交圆\(O\)于\(B^{\prime}\),
\(\because ∠ABE=135^{\circ}\),\(\therefore ∠AOE=90^{\circ}\),
又\(\because AE=4\),\(\therefore OA=OE=OB^{\prime}=2\sqrt{2}\),\(OD=2\),
要使\(△ABE\)的面积最大,只需高\(BH\)最大,
明显当\(B\)与\(B^{\prime}\)重合时,高\(BH\)最大,\(B^{\prime}D=OB^{\prime}-OD=2\sqrt{2}-2\),
此时\(S_{\triangle A B C}=S_{\triangle A B E}=\dfrac{1}{2} \cdot A E \cdot B^{\prime} D=\dfrac{1}{2} \times 4 \times(2 \sqrt{2}-2)=4 \sqrt{2}-4\),
即\(∆ABC\)面积的最大值为\(4\sqrt{2}-4\).
例2 如图,在\(∆ABC\)中,\(∠BAC=60^{\circ}\),\(D\)是\(BC\)的中点,\(AD=\sqrt{3}\),求\(AB+AC\)的最大值.
解析 延长\(AD\)至\(E\),使\(DE=AD\),连接\(BE\),
由倍中线模型易得\(∆ACD≅∆BED\),
\(\therefore AE=2AD=2\sqrt{3}\),\(∠E=∠DAC\),
\(\therefore AC//BE\),\(\therefore ∠ABE=180^{\circ}-∠BAC=120^{\circ}\),(倍长中线模型的运用)
延长\(AB\)到\(F\)使得\(BF=BE\),连接\(EF\),
\(\because ∠ABE=120^{\circ}\),\(\therefore ∠FBE=60^{\circ}\),\(\therefore ∆BEF\)是等边三角形,
\(\therefore AB+AC=AB+BE=AB+BF=AF\),\(∠F=60^{\circ}\),
\(\therefore △AEF\)是一个定弦定角三角形,\(AF\)的最大值就是 \(AB+AC\)的最大值,
(把定角定中线的\(∆ABC\)问题转化为定弦定角\(△AEF\)问题)
则\(△ABE\)的外接圆圆\(O\)是个定圆,且直径\(d=\dfrac{A E}{\sin \angle F}=\dfrac{2 \sqrt{3}}{\sin 60^{\circ}}=4\),
\(AF\)为圆\(O\)的一条弦,其最大值为直径\(4\),即\(AB+AC\)的最大值为\(4\).
情况4 定角定高
模型解释
定角定高指的是:在\(∆ABC\)中,\(∠BAC=α\)的大小和高\(AD\)的长度\(m\)是定值.
例题详讲
例1 已知\(∆ABC\)中,\(∠ABC=120^{\circ}\),\(BD⊥AC\)于\(D\),\(BD=5\),求\(∆ABC\)的面积的最小值.
解析 定角定高三角形的外接圆不是个定圆,当已知角的对边与外接圆半径存在关系,求\(∆ABC\)的面积的最小值只需求\(AC\)的最小值.
作\(∆ABC\)的外接圆\(O\),连接\(OA\),\(OB\),\(OC\),过\(O\)作\(OH⊥AC\)于\(H\),
\(\because ∠ABC=120^{\circ}\),易得\(∠AOH=60^{\circ}\),
设圆\(O\)的半径为\(r\),则\(O H=\dfrac{r}{2}\),\(AC=\sqrt{3} r\),
\(\because OB≥OH+BD\),\(\therefore r≥\dfrac{r}{2}+5\),解得\(r≥10\),
\(\therefore AC=\sqrt{3} r≥10\sqrt{3}\),\(AC\)的最小值为\(10\sqrt{3}\),
\(\because △ABC\)的面积的最小值\(\dfrac{1}{2}×10\sqrt{3}×5=25\sqrt{3}.\)
例2 如图,在\(∆ABC\)中,\(∠BAC=60^{\circ}\),\(BC\)上的高\(AD=6\),则\(∆ABC\)的周长的最小值为\(\underline{\quad \quad}\) .
解析 延长\(BC\)至\(F\),使得\(CF=AC\), 延长\(CB\)至\(E\),使得\(BE=AB\),连接\(AE\),\(AF\),
则\(∠EAB=\dfrac{1}{2}∠ABC\), \(∠FAC=\dfrac{1}{2}∠ACB\), \(∆ABC\)的周长\(=EF\),
\(\therefore ∠EAF=∠EAB+∠FAC+∠BAC=\dfrac{1}{2} (∠ABC+∠ACB)+∠BAC\)\(=\dfrac{1}{2} (180^{\circ}-∠BAC)+∠BAC=90^{\circ}+\dfrac{1}{2}∠BAC=120^{\circ}\),
(\(∆EAF\)属于定角定高三角形)
作\(∆EAF\)的外接圆\(O\),连接\(OE\),\(OF\),过\(O\)作\(OG⊥EF\),作\(OH\)垂直\(AD\)延长线于\(H\),
易得\(∠EOF=120^{\circ}\),
设圆\(O\)半径为\(r\),则\(OG=DH=\dfrac{r}{2}\),\(EF=\sqrt{3} r\),
\(\because OA≥AH=AD+OG\), \(\therefore r≥6+\dfrac{r}{2}\),解得\(r≥12\),
则\(EF=\sqrt{3} r≥12\sqrt{3}\),\(\therefore E\)F的最小值是\(12\sqrt{3}\),
\(\therefore ∆ABC\)的周长的最小值是\(12\sqrt{3}\).
情况5 定角定平分线
模型解释
定角定平分线指的是:在\(∆ABC\)中,\(∠BAC=α\)的大小和其角平分线\(AD\)的长度\(m\)是定值.
例题详讲
例1 如图,已知\(∆ABC\)中,\(∠BAC=60^{\circ}\),\(AD\)平分\(∠BAC\),交\(BC\)于\(D\),且\(AD=6\),则\(∆ABC\)的面积的最小值为\(\underline{\quad \quad}\).
解析 \(\because ∠BAC=60^{\circ}\),\(AD\)平分\(∠BAC\),\(\therefore ∠BAD=∠CAD=30^{\circ}\),
过\(D\)作\(DH⊥AB\)于\(H\),作\(DG⊥AC\)于\(G\),则\(DH=DG=\dfrac{1}{2} AD=3\),
\(\because ∠BAC=60^{\circ}\),\(\therefore ∠HDG=120^{\circ}\),\(\therefore ∠BDH+∠CDG=60^{\circ}\),
在\(AH\)上截取\(HE=CG\),则\(△DHE≅△DGC\),\(\therefore ∠BDE=∠BDH+∠CDG=60^{\circ}\),
(\(△BDE\)属于“定角定高”三角形)
\(S_{\triangle A B C}=S_{\triangle B D H}+S_{\triangle C D G}+S_{\triangle A D H}+S_{\triangle A D G}=S_{\triangle B D E}+2 S_{\triangle A D G}\)
\(=S_{\triangle B D E}+2 \times \dfrac{1}{2} \times 3 \times 3 \sqrt{3}=S_{\triangle B D E}+9 \sqrt{3}\),
\(\therefore\) 要使\(∆ABC\)面积最小,只需\(△BDE\)面积最小,
作\(△BDE\)外接圆圆\(O\),过\(O\)作\(ON⊥BE\)于\(N\),连接\(OD\),\(OB\),\(OE\),
\(\because ∠BDE=60^{\circ}\),\(\therefore ∠BOE=120^{\circ}\),
设圆\(O\)的半径为\(r\),则\(BE=\sqrt{3} r\),\(ON=\dfrac{1}{2} r\), (圆\(O\)不是个定圆)
\(\therefore OD+ON≥DH\),\(\therefore r+\dfrac{1}{2} r≥3\),\(\therefore r\geq 2\),
\(\therefore S_{\triangle B D E}=\dfrac{1}{2} \cdot B E \cdot D H=\dfrac{1}{2} \times \sqrt{3} r \times 3=\dfrac{3 \sqrt{3}}{2} r \geq 3 \sqrt{3}\),
\(\therefore △BDE\)面积的最小值为\(3\sqrt{3}\),
\(\therefore △ABC\)面积的最小值为\(=3\sqrt{3}+9\sqrt{3}=12\sqrt{3}\).
例2 如图,已知\(∆ABC\)中,\(∠BAC=120^{\circ}\),\(AD\)平分\(∠BAC\),交\(BC\)于\(D\),且\(AD=2\),则\(∆ABC\)的面积的最小值为\(\underline{\quad \quad}\).
解析 \(\because ∠BAC=120^{\circ}\),\(AD\)平分\(∠BAC\),\(\therefore ∠BAD=∠CAD=60^{\circ}\),
过\(D\)作\(DH⊥AB\)于\(H\),作\(DG⊥AC\)于\(G\),则\(DH=DG=\dfrac{\sqrt{3}}{2} A D=\sqrt{3}\),
\(\because ∠BAC=120^{\circ}\),\(\therefore ∠HDG=60^{\circ}\),\(\therefore ∠BDH+∠CDG=120^{\circ}\),
延长\(HA\)至\(E\)使得\(HE=CG\),则\(△DHE≅△DGC\),\(\therefore ∠BDE=∠BDH+∠CDG=60^{\circ}\),
(\(△BDE\)属于“定角定高”三角形)
\(S_{\triangle A B C}=S_{\triangle B D H}+S_{\triangle \mathrm{CDG}}+S_{\triangle A D H}+S_{\triangle A D G}=S_{\triangle B D E}+2 S_{\triangle A D G}\)
\(=S_{\triangle B D E}+2 \times \dfrac{1}{2} \times 1 \times \sqrt{3}=S_{\triangle B D E}+\sqrt{3}\),
\(\therefore\) 要使\(∆ABC\)面积最小,只需\(△BDE\)面积最小,
作\(△BDE\)外接圆圆\(O\),过\(O\)作\(ON⊥BE\)于\(N\),连接\(OD\),\(OB\),\(OE\),
\(\because ∠BDE=120^{\circ}\),\(\therefore ∠BOE=120^{\circ}\),
设圆\(O\)的半径为\(r\),则\(BE=\sqrt{3} r\),\(ON=\dfrac{1}{2} r\),
\(\therefore OD\geq DH+ON\),\(\therefore r\geq \dfrac{1}{2} r+\sqrt{3}\),\(\therefore r\geq 2\sqrt{3}\),
\(\therefore S_{\triangle B D E}=\dfrac{1}{2} \cdot B E \cdot D H=\dfrac{1}{2} \times \sqrt{3} r \times \sqrt{3}=\dfrac{3}{2} r \geq 3 \sqrt{3}\),
\(\therefore △BDE\)面积的最小值为\(3\sqrt{3}\),
\(\therefore △ABC\)面积的最小值为\(=3\sqrt{3}+\sqrt{3}=4\sqrt{3}\).
情况6 定角定周长
模型解释
定角定周长指的是:在\(∆ABC\)中,\(∠BAC=α\)的大小和三角形的周长\(m\)是定值.
这模型可以转化为“定弦定角”、“定角定高”等模型.
1 转化为“定弦定角”
延长\(CB\)至\(D\),使得\(DB=AB\), 延长\(BC\)至\(E\),使得\(CE=AC\),
则\(DE\)的长等于\(∆ABC\)的周长,
设\(∠BAC=α\),则\(∠ABC+∠ACB=180^{\circ}-α\),则\(\angle D+\angle E=\dfrac{180^{\circ}-\alpha}{2}\),
\(\therefore \angle D A E=90^{\circ}+\dfrac{\alpha}{2}\)是定值,转化为关于\(∆ADE\)的“定弦定角”模型.
2 转化为“定角定高”
作\(∆ABC\)旁切圆\(\odot O\)(即与\(BC\),\(AB\)与\(AC\)延长均相切的圆,则\(AO\)、\(BO\)、\(CO\)分别是\(∠BAC\)、\(∠EBC\)、\(∠BCF\)的平分线),
则由圆的切线长定理可知\(BD=BE\),\(CD=CF\),\(AE=AF\),
\(\therefore 2AE\)的长等于\(∆ABC\)的周长,即\(AE\)为定值,
\(\because ∠BAC=α\)是定值,\(\therefore ∠EAO=\dfrac{1}{2}∠BAC=\dfrac{1}{2} α\)是定值,
\(\therefore\)在\(∆AOE\)中,\(∠EAO\)是定值,\(AE\)为定值, \(\therefore \odot O\)的半径\(OE\)是定值,\(\therefore OD\)是定值,
而\(∠BOC=∠BOD+∠COD=\dfrac{1}{2} (∠EOD+∠FOD)=\dfrac{1}{2}∠EOF=\dfrac{1}{2} (180^{\circ}-α)\)也是定值,
故\(∆ABC\)属于“定角定高”模型.
例题详讲
例1 已知\(△ABC\)的周长为\(12\sqrt{3}\),\(∠BAC=60^{\circ}\),求\(BC\)的最小值.
解析 作\(△ABC\)旁切圆\(O\),连接\(OA\),\(OB\),\(OC\),
过\(O\)作\(OE⊥AB\), \(OF⊥AC\),\(OD⊥BC\),
由切线长定理可得\(AE=AF\),\(BE=BD\),\(CD=CF\),
\(\because △ABC\)的周长为\(12\sqrt{3}\),
\(\therefore AE+AF=12\sqrt{3}\),\(\therefore AE=AF=6\sqrt{3}\),
\(\because ∠BAC=60^{\circ}\),\(\therefore ∠OAF=∠OAE=30^{\circ}\),\(\therefore OD=OE=OF=6\),
易求\(∠COB=60^{\circ}\), (\(△COB\)属于“定角定高”的三角形)
作\(△COB\)外接圆圆\(Q\),连接\(QO\),\(QC\),过\(O\)作\(OD⊥BC\), 过\(Q\)作\(QH⊥BC\),
设圆\(Q\)半径为\(r\),易得\(∠BCQ=30^{\circ}\),
则\(OQ+QH\geq OD\),\(\therefore r+\dfrac{1}{2} r\geq 6\),解得\(r\geq 4\),\(\therefore BC=\sqrt{3} r\geq 4\sqrt{3}\),
\(\therefore BC\)的最小值为\(4\sqrt{3}\).
例2 已知\(△ABC\)的周长为\(4\sqrt{3}\),\(∠B=60^{\circ}\),\(BD\)为\(AC\)边上的高,求\(BD\)的最大值.
解析 延长\(CA\)至\(E\),使得\(AE=BA\), 延长\(AC\)至\(F\),使得\(CF=BC\),
则\(EF=EA+AC+CF=AB+AC+BC=4\sqrt{3}\),\(∠E=\dfrac{1}{2}∠BAC\), \(∠F=\dfrac{1}{2}∠ACB\),
\(\therefore ∠EBF=180^{\circ}-(∠E+∠F)=180^{\circ}-\dfrac{1}{2} (∠BAC+∠ACB)=180^{\circ}-60^{\circ}=120^{\circ}\),
(\(∆EBF\)属于“定弦定角”三角形)
作\(∆EBF\)的外接圆\(O\),连接\(OE\),\(OF\),过\(O\)作\(OD^{\prime}⊥EF\),延长\(OD^{\prime}\)交圆\(O\)于\(B^{\prime}\),
\(BD\)的最大值为\(B^{\prime} D^{\prime}=OB^{\prime}-OD^{\prime}\),
易得\(∠OEF=30^{\circ}\),\(ED^{\prime}=\dfrac{1}{2} EF=2\sqrt{3}\),\(OD^{\prime}=2\),
\(\therefore OE=4\), \(\therefore OB^{\prime}=4\),
\(\therefore B^{\prime} D^{\prime}=OB^{\prime}-OD^{\prime}=2\),即\(BD\)的最大值为\(2\).
例3 已知\(△ABC\)的周长为\(4\sqrt{3}\),\(∠A=60^{\circ}\),求\(△ABC\)面积的最大值.
解析 作\(△ABC\)的旁切圆圆\(O\),与\(BC\)的切点为\(E\),与\(AB\),\(AC\)延长线的切点分别为\(D\),\(F\),连接\(OA\),\(OB\),\(OC\),
易得\(△OBD≅△OBE\),\(△OEC≅△OFC\),
则\(S_{\triangle O B D} \cong S_{\triangle O B E}\), \(S_{\triangle O E C} \cong S_{\triangle O F C}\),\(BE=BD\),\(CE=CF\),
\(\because △ABC\)的周长为\(4\sqrt{3}\),\(\therefore AE+AF=4\sqrt{3}\),
又\(\because AE=AF\),\(\therefore AF=2\sqrt{3}\),
在\(△AOF\)中,\(O F=\dfrac{A F}{\sqrt{3}}=2\), \(\therefore OE=2\),
易求\(∠BOC=60^{\circ}\),\(\therefore △OBC\)是定角定高的三角形,
而\(S_{\triangle A B C}=S_{\text {四边形 } O F A D}-S_{\text {五边形 } O F C B D}=2 S_{\triangle O A F}-2 S_{\triangle O B C}=4 \sqrt{3}-2 S_{\triangle O B C}\),
求\(△ABC\)面积的最大值,只需求\(△OBC\)面积的最小值,
作\(△OBC\)的外接圆圆\(G\),过点\(G\)作\(GH⊥BC\),
设圆的半径为\(r\),
易得\(∠BOG=30^{\circ}\),则\(MG=\dfrac{1}{2} r\),\(BC=\sqrt{3} r\),
由\(OG+GH\geq OE\)得\(\dfrac{1}{2} r+r\geq 2\),解得\(r \geq \dfrac{4}{3}\),
\(\therefore S_{\triangle O B C}=\dfrac{1}{2} O E \times B C=\sqrt{3} r \geq \dfrac{4 \sqrt{3}}{3}\),
\(\therefore S_{\triangle A B C}=4 \sqrt{3}-2 S_{\triangle O B C} \leq 4 \sqrt{3}-\dfrac{8 \sqrt{3}}{3}=\dfrac{4 \sqrt{3}}{3}\),
即\(△ABC\)面积的最大值为\(\dfrac{4 \sqrt{3}}{3}\).