独热编码
回想一下,在train_iter
中,每个词元都表示为一个数字索引, 将这些索引直接输入神经网络可能会使学习变得困难。 我们通常将每个词元表示为更具表现力的特征向量。 最简单的表示称为独热编码(one-hot encoding), 它在 3.4.1节中介绍过。
简言之,将每个索引映射为相互不同的单位向量: 假设词表中不同词元的数目为N(len(vocab))词元索引的范围为0到N-1。如果词元的索引是整数i ,那么我们将创建一个长度为N的全0向量, 并将第i处的元素设置为1。 此向量是原始词元的一个独热向量。 索引为0和2独热向量如下所示:<br class="Apple-interchange-newline">
F.one_hot(torch.tensor([0, 2]), len(vocab))
tensor([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
我们每次采样的小批量数据形状是二维张量: (批量大小,时间步数)。 one_hot
函数将这样一个小批量数据转换成三维张量, 张量的最后一个维度等于词表大小(len(vocab)
)。 我们经常转换输入的维度,以便获得形状为 (时间步数,批量大小,词表大小)的输出。 这将使我们能够更方便地通过最外层的维度, 一步一步地更新小批量数据的隐状态。
X = torch.arange(10).reshape((2, 5)) F.one_hot(X.T, 28).shape
torch.Size([5, 2, 28])
初始化模型参数
接下来,我们初始化循环神经网络模型的模型参数。 隐藏单元数num_hiddens
是一个可调的超参数。 当训练语言模型时,输入和输出来自相同的词表。 因此,它们具有相同的维度,即词表的大小。
def get_params(vocab_size, num_hiddens, device): num_inputs = num_outputs = vocab_size def normal(shape): return torch.randn(size=shape, device=device) * 0.01 # 隐藏层参数 W_xh = normal((num_inputs, num_hiddens)) W_hh = normal((num_hiddens, num_hiddens)) b_h = torch.zeros(num_hiddens, device=device) # 输出层参数 W_hq = normal((num_hiddens, num_outputs)) b_q = torch.zeros(num_outputs, device=device) # 附加梯度 params = [W_xh, W_hh, b_h, W_hq, b_q] for param in params: param.requires_grad_(True) return params
循环神经网络模型
定义了所有需要的函数之后,接下来我们创建一个类来包装这些函数, 并存储从零开始实现的循环神经网络模型的参数。
class RNNModelScratch: #@save """从零开始实现的循环神经网络模型""" def __init__(self, vocab_size, num_hiddens, device, get_params, init_state, forward_fn): self.vocab_size, self.num_hiddens = vocab_size, num_hiddens self.params = get_params(vocab_size, num_hiddens, device) self.init_state, self.forward_fn = init_state, forward_fn def __call__(self, X, state): X = F.one_hot(X.T, self.vocab_size).type(torch.float32) return self.forward_fn(X, state, self.params) def begin_state(self, batch_size, device): return self.init_state(batch_size, self.num_hiddens, device)
让我们检查输出是否具有正确的形状。 例如,隐状态的维数是否保持不变。
num_hiddens = 512 net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn) state = net.begin_state(X.shape[0], d2l.try_gpu()) Y, new_state = net(X.to(d2l.try_gpu()), state) Y.shape, len(new_state), new_state[0].shape
(torch.Size([10, 28]), 1, torch.Size([2, 512]))
预测
让我们首先定义预测函数来生成prefix
之后的新字符, 其中的prefix
是一个用户提供的包含多个字符的字符串。 在循环遍历prefix
中的开始字符时, 我们不断地将隐状态传递到下一个时间步,但是不生成任何输出。 这被称为预热(warm-up)期, 因为在此期间模型会自我更新(例如,更新隐状态), 但不会进行预测。 预热期结束后,隐状态的值通常比刚开始的初始值更适合预测, 从而预测字符并输出它们。(虽然在理论上可以在预测时同时顺便进行状态更新,但在实际应用中,预热器可以提前进行状态更新,以便在预测时更快地生成结果。)
def predict_ch8(prefix, num_preds, net, vocab, device): #@save """在prefix后面生成新字符""" state = net.begin_state(batch_size=1, device=device) outputs = [vocab[prefix[0]]] get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1)) for y in prefix[1:]: # 预热期 _, state = net(get_input(), state) outputs.append(vocab[y]) for _ in range(num_preds): # 预测num_preds步 y, state = net(get_input(), state) outputs.append(int(y.argmax(dim=1).reshape(1))) return ''.join([vocab.idx_to_token[i] for i in outputs])
现在我们可以测试predict_ch8
函数。 我们将前缀指定为time traveller
, 并基于这个前缀生成10个后续字符。 鉴于我们还没有训练网络,它会生成荒谬的预测结果。
predict_ch8('time traveller ', 10, net, vocab, d2l.try_gpu())、
'time traveller aaaaaaaaaa'
梯度裁剪
裁剪梯度是优化算法中一种常用的技术,用于控制梯度的大小,以避免梯度爆炸(梯度过大)或梯度消失(梯度过小)的问题。其中,将梯度投影回给定半径的球是一种流行的替代方案,下面我来详细解释一下:
-
裁剪梯度的概念: 在深度学习中,参数更新通常是通过反向传播计算得到的梯度,梯度表示了损失函数关于参数的变化率。然而,有时梯度可能会非常大,导致参数更新过大,这可能会使模型不稳定甚至无法收敛。相反,梯度过小可能会导致训练过慢,或者陷入局部最优解。为了避免这些问题,我们可以对梯度进行裁剪,即限制梯度的范数。
-
将梯度投影回给定半径的球: 这种方法的思想是,当梯度的范数(或长度)超过了一个指定的阈值(例如,给定半径),我们可以按比例缩放梯度向量,使其重新落在以原点为圆心、给定半径为半径的球面上。这样做可以保证梯度的范数不会超过给定的阈值,同时保持了梯度的方向。具体来说,如果梯度的范数超过了给定的阈值,我们可以按如下方式进行操作:
- 计算当前梯度的范数。
- 如果梯度的范数超过了给定阈值,我们将梯度向量缩放至与给定半径相切。
这种方法的好处在于,它可以有效地控制梯度的大小,从而提高训练的稳定性,同时避免出现梯度爆炸或梯度消失的问题。在实际的深度学习训练中,对于一些梯度范围较大的情况,采用梯度裁剪的技术能够帮助模型更好地学习并取得更好的性能。
def grad_clipping(net, theta): #@save """裁剪梯度""" if isinstance(net, nn.Module): params = [p for p in net.parameters() if p.requires_grad] else: params = net.params norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params)) if norm > theta: for param in params: param.grad[:] *= theta / norm
训练
在训练模型之前,让我们定义一个函数在一个迭代周期内训练模型。 它与我们训练 3.6节模型的方式有三个不同之处。
-
序列数据的不同采样方法(随机采样和顺序分区)将导致隐状态初始化的差异。
-
我们在更新模型参数之前裁剪梯度。 这样的操作的目的是,即使训练过程中某个点上发生了梯度爆炸,也能保证模型不会发散。
-
我们用困惑度来评价模型。如 8.4.4节所述, 这样的度量确保了不同长度的序列具有可比性。
具体来说,当使用顺序分区时, 我们只在每个迭代周期的开始位置初始化隐状态。 由于下一个小批量数据中的第个子序列样本 与当前第个子序列样本相邻, 因此当前小批量数据最后一个样本的隐状态, 将用于初始化下一个小批量数据第一个样本的隐状态。 这样,存储在隐状态中的序列的历史信息 可以在一个迭代周期内流经相邻的子序列。 然而,在任何一点隐状态的计算, 都依赖于同一迭代周期中前面所有的小批量数据, 这使得梯度计算变得复杂(类似于多层的神经网络模型,存梯度爆炸和梯度衰减的风险)。 为了降低计算量,在处理任何一个小批量数据之前, 我们先分离梯度,使得隐状态的梯度计算总是限制在一个小批量数据的时间步内。
当使用随机抽样时,因为每个样本都是在一个随机位置抽样的, 因此需要为每个迭代周期重新初始化隐状态。 与 3.6节中的 train_epoch_ch3
函数相同,updater
是更新模型参数的常用函数。 它既可以是从头开始实现的d2l.sgd
函数, 也可以是深度学习框架中内置的优化函数。
总结
-
我们可以训练一个基于循环神经网络的字符级语言模型,根据用户提供的文本的前缀生成后续文本。
-
一个简单的循环神经网络语言模型包括输入编码、循环神经网络模型和输出生成。
-
循环神经网络模型在训练以前需要初始化状态,不过随机抽样和顺序划分使用初始化方法不同。
-
当使用顺序划分时,我们需要分离梯度以减少计算量。
-
在进行任何预测之前,模型通过预热期进行自我更新(例如,获得比初始值更好的隐状态)。
-
梯度裁剪可以防止梯度爆炸,但不能应对梯度消失。
标签:vocab,机器,梯度,state,num,神经网络,循环,params,device From: https://www.cnblogs.com/yccy/p/17827116.html