首页 > 其他分享 >使用ResponseSelector实现校园招聘FAQ机器人

使用ResponseSelector实现校园招聘FAQ机器人

时间:2023-11-11 23:14:17浏览次数:38  
标签:11 10 ResponseSelector rasa 23 FAQ 校园 engine DEBUG

  本文主要介绍使用ResponseSelector实现校园招聘FAQ机器人,回答面试流程和面试结果查询的FAQ问题。FAQ机器人功能分为业务无关的功能和业务相关的功能2类。

一.data/nlu.yml文件
  与普通意图相比,ResponseSelector训练数据中的意图采用group/intent格式(检索意图)。比如,普通意图intent: greet,而后者intent: faq/notes。如下所示:

version: "3.1"
nlu:
  - intent: goodbye
    examples: |
      - 拜拜
      - 再见
      - 拜
      - 退出
      - 结束
  - intent: greet
    examples: |
      - 你好
      - 您好
      - hello
      - hi
      - 喂
      - 在么
  - intent: faq/notes
    examples: |
      - 应聘ACME校园招聘职位的注意事项?
  - intent: faq/work_location
    examples: |
      - 校园招聘录取的应届生主要工作地点在哪里?
  - intent: faq/max_job_request
    examples: |
      - 最多申请几个职位?
  - intent: faq/audit
    examples: |
      - 各阶段审核说明
  - intent: faq/write_exam_participate
    examples: |
      - 怎样参加笔试?
  - intent: faq/write_exam_location
    examples: |
      - 笔试考试地点如何安排?
  - intent: faq/write_exam_again
    examples: |
      - 笔试只安排一次吗?我笔试当天没有参加,是否还有再次笔试的机会?
  - intent: faq/write_exam_with-out-offer
    examples: |
      - 如果我没有收到笔试通知,但我很想进入ACME,能否直接进入考场参加考试?
  - intent: faq/interview_arrangement
    examples: |
      - 面试什么时候开始?会提前多少天通知面试安排?
  - intent: faq/interview_times
    examples: |
      - 一般会安排几次面试?
  - intent: faq/interview_from
    examples: |
      - 面试的形式是怎样的?是单独面试还是小组面试?
  - intent: faq/interview_clothing
    examples: |
      - 对面试的服装有什么具体的要求?
  - intent: faq/interview_paperwork
    examples: |
      - 面试时需要携带什么资料?
  - intent: faq/interview_result
    examples: |
      - 如何查询面试结果?

二.data/responses.yml文件
  主要是根据相关intent来进行相应的response。比如,utter_faq/notes的response对应于意图faq/notes。如下所示:

version: "3.1"
responses:
  utter_faq/notes:
    - text: 1、登在校园招聘板块内的职位信息才适用于应届毕业生招聘,请所有的应届毕业生去校园招聘的版块寻找您感兴趣的职位。2、列出的每个职位的要求是该职位的最低要求,为了保证您应聘的成功率,希望您严格按照职位的要求考虑您的选择。3、提交成功后,在招聘结束前,您将不能修改或再次提交简历,因此,请于仔细确认填写信息后提交简历。
  utter_faq/work_location:
    - text: 招聘信息中包含各职位的工作地点内容,请参考各职位内容的详细介绍。
  utter_faq/max_job_request:
    - text: 对于校园招聘,最多申请2个职位。
  utter_faq/audit:
    - text: 1、简历审核:应聘者需要通过ACME网站,填写并提交个人简历,ACME的招聘专员将对收取的简历进行认真的审查和筛选。了解应聘者的情况,并筛选出符合职位要求的简历,同时确认简历记载内容是否属实。2、笔试审核:ACME技术类测试主要针对应聘者的专业技能进行检查和评价。3、面试审核:经过实施评价应聘者基本素质的第一阶段面试和评价专业知识的第二阶段面试,对应聘者是否符合ACME人才理念以及应聘者的工作能力做出客观的综合评价,从而决定是否录用该应聘者。
  utter_faq/write_exam_participate:
    - text: 通过简历审核的应聘者,我们将采用短信、e-mail、ACME公告栏以及电话通知的方式告知您
  utter_faq/write_exam_location:
    - text: 笔试地点将根据您在简历中填写的学校所在城市进行统筹安排
  utter_faq/write_exam_again:
    - text: 校园招聘的大规模的笔试仅安排一次,请收到笔试通知的同学认真对待笔试机会。
  utter_faq/write_exam_with-out-offer:
    - text: 由于我们是按照严格的招聘流程筛选出的笔试名单,所以非常抱歉,对于没有收到笔试通知的同学,就不能参加本次校园招聘的笔试。
  utter_faq/interview_arrangement:
    - text: 不同的职位面试进度安排不同,除特殊安排外,笔试结束一周左右会安排面试。
  utter_faq/interview_times:
    - text: 一般情况下,业务部门和人力资源部会同时或者分别安排一次面试。个别特殊职位需要2次及以上的面试。
  utter_faq/interview_from:
    - text: 面试一般以单独面试的形式进行,但根据各公司的面试安排,也会进行小组面试。
  utter_faq/interview_clothing:
    - text: 面试着装没有统一要求,但建议您尽量穿着较为正式的职业装参加。
  utter_faq/interview_paperwork:
    - text: 面试时,请您携带可以证明您身份的有效证件,有特殊要求的职位请携带好能证明您专业水平的证书原件以及复印件。
  utter_faq/interview_result:
    - text: 我们会通过邮件或电话的形式,通知您面试结果。

三.data/stories.yml文件
  story即场景编排,如下所示:

version: "3.1"
stories:
  - story: greet
    steps:
      - intent: greet
      - action: utter_greet
  - story: say goodbye
    steps:
      - intent: goodbye
      - action: utter_goodbye

四.data/rules.yml文件
  定义了规则名"respond to FAQs",当检索意图是faq时,执行utter_faq,如下所示:

version: "3.1"
rules:
  - rule: respond to FAQs
    steps:
      - intent: faq
      - action: utter_faq

五.domain.yml文件
  该文件主要包含intents、responses和actions等信息,如下所示:

version: "3.1"

session_config:
  session_expiration_time: 60
  carry_over_slots_to_new_session: true
intents:
  - goodbye
  - greet
  - faq
responses:
  utter_greet:
    - text: 你好,我是 Silly,我是一个基于 Rasa 的 FAQ 机器人
  utter_goodbye:
    - text: 再见!
  utter_default:
    - text: 系统不明白您说的话
actions:
  - utter_goodbye
  - utter_greet
  - utter_default
  - utter_faq

六.config.yml文件
  主要是pipeline和policies设置。前者基本思路是分词、特征化、意图识别和实体抽取,后者定义各种策略。特别注意,FAQ机器人需要将ResponseSelector组件加入NLU的流水线,并且还需要启用RulePolicy和设置rule(参考四.data/rules.yml文件)。如下所示:

recipe: default.v1
language: "zh"

pipeline:
- name: JiebaTokenizer
- name: LanguageModelFeaturizer
  model_name: "bert"
#  model_weights: "bert-base-chinese"
  model_weights: "L:/20230713_HuggingFaceModel/20231004_BERT/bert-base-chinese"
- name: "DIETClassifier"
  epochs: 100
  tensorboard_log_directory: ./log
  learning_rate: 0.001
- name: "ResponseSelector"

policies:
- name: MemoizationPolicy
- name: TEDPolicy
- name: RulePolicy
assistant_id: 20231109-225257-frayed-branch

七.endpoints.yml文件
  action_endpoint、tracker_store和event_broker通常使用默认配置,如下所示:

# This file contains the different endpoints your bot can use.

# Server where the models are pulled from.
# https://rasa.com/docs/rasa/user-guide/running-the-server/#fetching-models-from-a-server/

#models:
#  url: http://my-server.com/models/default_core@latest
#  wait_time_between_pulls:  10   # [optional](default: 100)

# Server which runs your custom actions.
# https://rasa.com/docs/rasa/core/actions/#custom-actions/

action_endpoint:
  url: "http://localhost:5055/webhook"

# Tracker store which is used to store the conversations.
# By default the conversations are stored in memory.
# https://rasa.com/docs/rasa/api/tracker-stores/

#tracker_store:
#    type: redis
#    url: <host of the redis instance, e.g. localhost>
#    port: <port of your redis instance, usually 6379>
#    db: <number of your database within redis, e.g. 0>
#    password: <password used for authentication>

#tracker_store:
#    type: mongod
#    url: <url to your mongo instance, e.g. mongodb://localhost:27017>
#    db: <name of the db within your mongo instance, e.g. rasa>
#    username: <username used for authentication>
#    password: <password used for authentication>

# Event broker which all conversation events should be streamed to.
# https://rasa.com/docs/rasa/api/event-brokers/

#event_broker:
#  url: localhost
#  username: username
#  password: password
#  queue: queue

八.模型训练和运行Rasa服务器
1.模型训练

rasa train

2.运行Rasa服务器

rasa run --cors "*"

3.开启http server服务

python -m http.server

说明:测试FAQ机器人可以通过Web页面,还可通过命令行rasa shell --debug。

九.PyCharm调试Rasa代码
1.Rasa中的DAG
  Rasa中DAG图节点可能是NLP组件,也可能是Policy组件,本质上都可以抽象为Graph Component。如下所示:   Rasa会把训练过的Component缓存到磁盘中,当某个Component发生变化的时候,比如CountVectorizer,只会把依赖CountVectorizer的组件(DIETClassifier、TEDPolicy和Policy Ensemble)再训练,而其它的组件不变。如下所示: 2.PyCharm调试Rasa代码
  PyCharm调试Rasa源码也比较方便,主要是设置脚本路径、参数和工作目录,如下所示:   然后就可以调试训练数据是如何被处理的,DAG是如何被构建的,Component是如何被加载和运行的,最终模型文件是如何被存储的等。Rasa中的fingerprint_key可能是唯一标识的意思。
3.rasa train nlu --debug日志
  通过控制台输出日志,可辅助理解Rasa执行过程,以及源码调试,如下所示:

L:\20231106_ConversationSystem\20220407_RasaEcosystem\RasaBooks\RasaInAction\rasa_chinese_book_code\Chapter04\venv\Scripts\python.exe "D:/Program Files/JetBrains/PyCharm 2023.1.3/plugins/python/helpers/pydev/pydevd.py" --multiprocess --qt-support=auto --client 127.0.0.1 --port 38019 --file L:\20231106_ConversationSystem\20220407_RasaEcosystem\RasaBooks\RasaInAction\rasa_chinese_book_code\Chapter04\venv\Lib\site-packages\rasa\__main__.py train nlu --debug
Connected to pydev debugger (build 232.9559.58)

2023-11-10 23:24:32 DEBUG    h5py._conv  - Creating converter from 7 to 5
2023-11-10 23:24:32 DEBUG    h5py._conv  - Creating converter from 5 to 7

2023-11-10 23:26:17 DEBUG    rasa.shared.nlu.training_data.loading  - Training data format of 'data\nlu.yml' is 'rasa_yml'.  # nul.yml文件(rasa_yml数据格式)
2023-11-10 23:26:17 DEBUG    rasa.shared.nlu.training_data.loading  - Training data format of 'data\responses.yml' is 'rasa_yml'.  # responses.yml文件(rasa_yml数据格式)
2023-11-10 23:26:17 DEBUG    rasa.shared.nlu.training_data.loading  - Training data format of 'data\rules.yml' is 'unk'.  # rules.yml文件(unk数据格式)
2023-11-10 23:26:17 DEBUG    rasa.shared.nlu.training_data.loading  - Training data format of 'data\stories.yml' is 'unk'.  # stories.yml文件(unk数据格式)

2023-11-10 23:26:33 DEBUG    rasa.telemetry  - Skipping telemetry reporting: no license hash found.  # 跳过telemetry报告:找不到许可证哈希。
2023-11-10 23:27:24 DEBUG    rasa.engine.training.graph_trainer  - Starting training.  # 开始训练

2023-11-10 23:27:24 DEBUG    rasa.engine.graph  - Node 'train_JiebaTokenizer0' loading 'FingerprintComponent.create' and kwargs: '{}'.  # train_JiebaTokenizer0
2023-11-10 23:27:24 DEBUG    rasa.engine.graph  - Node 'run_JiebaTokenizer0' loading 'FingerprintComponent.create' and kwargs: '{}'.  # run_JiebaTokenizer0
2023-11-10 23:27:24 DEBUG    rasa.engine.graph  - Node 'run_LanguageModelFeaturizer1' loading 'FingerprintComponent.create' and kwargs: '{}'.  # run_LanguageModelFeaturizer1
2023-11-10 23:27:24 DEBUG    rasa.engine.graph  - Node 'train_DIETClassifier2' loading 'FingerprintComponent.create' and kwargs: '{}'.  # train_DIETClassifier2
2023-11-10 23:27:24 DEBUG    rasa.engine.graph  - Node 'train_ResponseSelector3' loading 'FingerprintComponent.create' and kwargs: '{}'.  # train_ResponseSelector3
2023-11-10 23:27:24 DEBUG    rasa.engine.training.graph_trainer  - Running the train graph in fingerprint mode.  # 在fingerprint模式下运行训练图。
2023-11-10 23:27:24 DEBUG    rasa.engine.runner.dask  - Running graph with inputs: {'__importer__': NluDataImporter}, targets: None and ExecutionContext(model_id=None, should_add_diagnostic_data=False, is_finetuning=False, node_name=None).
2023-11-10 23:27:24 DEBUG    rasa.engine.graph  - Node 'schema_validator' loading 'DefaultV1RecipeValidator.create' and kwargs: '{}'.  # schema_validator
2023-11-10 23:27:24 DEBUG    rasa.engine.graph  - Node 'schema_validator' running 'DefaultV1RecipeValidator.validate'.  # schema_validator
2023-11-10 23:27:24 DEBUG    rasa.shared.nlu.training_data.training_data  - Validating training data...  # 验证训练数据...
2023-11-10 23:27:24 DEBUG    rasa.engine.graph  - Node 'finetuning_validator' loading 'FinetuningValidator.create' and kwargs: '{}'.  # finetuning_validator
2023-11-10 23:27:24 DEBUG    rasa.engine.graph  - Node 'finetuning_validator' running 'FinetuningValidator.validate'.  # finetuning_validator
2023-11-10 23:27:24 DEBUG    rasa.engine.storage.local_model_storage  - Resource 'finetuning_validator' was requested for writing.  # finetuning_validator
2023-11-10 23:27:24 DEBUG    rasa.engine.storage.local_model_storage  - Resource 'finetuning_validator' was persisted.  # finetuning_validator
2023-11-10 23:27:24 DEBUG    rasa.engine.graph  - Node 'nlu_training_data_provider' loading 'NLUTrainingDataProvider.create' and kwargs: '{}'.  # nlu_training_data_provider
2023-11-10 23:27:24 DEBUG    rasa.engine.graph  - Node 'nlu_training_data_provider' running 'NLUTrainingDataProvider.provide'.  # nlu_training_data_provider
2023-11-10 23:27:24 DEBUG    rasa.shared.nlu.training_data.loading  - Training data format of 'data\nlu.yml' is 'rasa_yml'.  # nul.yml文件(rasa_yml数据格式)
2023-11-10 23:27:25 DEBUG    rasa.shared.nlu.training_data.loading  - Training data format of 'data\responses.yml' is 'rasa_yml'.  # responses.yml文件(rasa_yml数据格式)
2023-11-10 23:27:25 DEBUG    rasa.engine.graph  - Node 'train_JiebaTokenizer0' running 'FingerprintComponent.run'.  # train_JiebaTokenizer0
2023-11-10 23:27:25 DEBUG    rasa.engine.training.fingerprinting  - Calculated fingerprint_key '963f41cf1cdb9cadc8914a14e070fb8e' for class 'JiebaTokenizer'.  # 计算类'JiebaTokenizer'的指纹密钥
2023-11-10 23:27:25 DEBUG    rasa.engine.graph  - Node 'run_JiebaTokenizer0' running 'FingerprintComponent.run'.  # run_JiebaTokenizer0
2023-11-10 23:27:25 DEBUG    rasa.engine.training.fingerprinting  - Calculated fingerprint_key 'ae36d2dae4cc78840b153d44fee8f81a' for class 'JiebaTokenizer'.  # 计算类'JiebaTokenizer'的指纹密钥
2023-11-10 23:27:25 DEBUG    rasa.engine.graph  - Node 'run_LanguageModelFeaturizer1' running 'FingerprintComponent.run'.  # run_LanguageModelFeaturizer1
2023-11-10 23:27:25 DEBUG    rasa.engine.training.fingerprinting  - Calculated fingerprint_key 'f2bfce545dd2c1c12fb895b075954315' for class 'LanguageModelFeaturizer'.  # 计算类'LanguageModelFeaturizer'的指纹密钥
2023-11-10 23:27:25 DEBUG    rasa.engine.graph  - Node 'train_DIETClassifier2' running 'FingerprintComponent.run'.  # train_DIETClassifier2
2023-11-10 23:27:25 DEBUG    rasa.engine.training.fingerprinting  - Calculated fingerprint_key '1d3616cf6980e5f0f38aa9ceb51f1e7a' for class 'DIETClassifier'.  # 计算类'DIETClassifier'的指纹密钥
2023-11-10 23:27:25 DEBUG    rasa.engine.graph  - Node 'train_ResponseSelector3' running 'FingerprintComponent.run'.  # train_ResponseSelector3
2023-11-10 23:27:25 DEBUG    rasa.engine.training.fingerprinting  - Calculated fingerprint_key 'b91434757a05a4178cdc7f7882cfd9aa' for class 'ResponseSelector'.  # 计算类'ResponseSelector'的指纹密钥
2023-11-10 23:27:25 DEBUG    rasa.engine.training.graph_trainer  - Running the pruned train graph with real node execution.  # 使用真实节点执行修剪的训练图。
2023-11-10 23:27:25 DEBUG    rasa.engine.runner.dask  - Running graph with inputs: {'__importer__': NluDataImporter}, targets: None and ExecutionContext(model_id=None, should_add_diagnostic_data=False, is_finetuning=False, node_name=None).
2023-11-10 23:27:25 DEBUG    rasa.engine.graph  - Hook 'LoggingHook.on_before_node' running for node 'nlu_training_data_provider'.  # nlu_training_data_provider
2023-11-10 23:27:25 DEBUG    rasa.engine.graph  - Hook 'TrainingHook.on_before_node' running for node 'nlu_training_data_provider'.  # nlu_training_data_provider
2023-11-10 23:27:25 DEBUG    rasa.engine.training.fingerprinting  - Calculated fingerprint_key '1fbfa24243412736ce1002efbeba382f' for class 'NLUTrainingDataProvider'.  # 计算类'NLUTrainingDataProvider'的指纹密钥
2023-11-10 23:27:25 DEBUG    rasa.engine.graph  - Node 'nlu_training_data_provider' loading 'PrecomputedValueProvider.create' and kwargs: '{}'.  # nlu_training_data_provider
2023-11-10 23:27:25 DEBUG    rasa.engine.graph  - Node 'nlu_training_data_provider' running 'PrecomputedValueProvider.get_value'.  # nlu_training_data_provider
2023-11-10 23:27:25 DEBUG    rasa.engine.graph  - Hook 'LoggingHook.on_after_node' running for node 'nlu_training_data_provider'.  # nlu_training_data_provider
2023-11-10 23:27:25 DEBUG    rasa.engine.graph  - Hook 'TrainingHook.on_after_node' running for node 'nlu_training_data_provider'.  # nlu_training_data_provider
2023-11-10 23:27:25 DEBUG    rasa.engine.graph  - Hook 'LoggingHook.on_before_node' running for node 'train_JiebaTokenizer0'.  # train_JiebaTokenizer0
2023-11-10 23:27:25 INFO     rasa.engine.training.hooks  - Starting to train component 'JiebaTokenizer'.  # 开始训练组件'JiebaTokenizer'。
2023-11-10 23:27:25 DEBUG    rasa.engine.graph  - Hook 'TrainingHook.on_before_node' running for node 'train_JiebaTokenizer0'.  # train_JiebaTokenizer0
2023-11-10 23:27:25 DEBUG    rasa.engine.training.fingerprinting  - Calculated fingerprint_key '963f41cf1cdb9cadc8914a14e070fb8e' for class 'JiebaTokenizer'.  # 计算类'JiebaTokenizer'的指纹密钥
2023-11-10 23:27:25 DEBUG    rasa.engine.graph  - Node 'train_JiebaTokenizer0' loading 'JiebaTokenizer.create' and kwargs: '{}'.  # train_JiebaTokenizer0
2023-11-10 23:27:25 DEBUG    rasa.engine.graph  - Node 'train_JiebaTokenizer0' running 'JiebaTokenizer.train'.  # train_JiebaTokenizer0
2023-11-10 23:27:25 DEBUG    rasa.engine.graph  - Hook 'LoggingHook.on_after_node' running for node 'train_JiebaTokenizer0'.  # train_JiebaTokenizer0
2023-11-10 23:27:25 INFO     rasa.engine.training.hooks  - Finished training component 'JiebaTokenizer'.  # 完成训练组件'JiebaTokenizer'。
2023-11-10 23:27:25 DEBUG    rasa.engine.graph  - Hook 'TrainingHook.on_after_node' running for node 'train_JiebaTokenizer0'.  # train_JiebaTokenizer0
2023-11-10 23:27:25 DEBUG    rasa.engine.training.hooks  - Caching 'Resource' with fingerprint_key: '963f41cf1cdb9cadc8914a14e070fb8e' and output_fingerprint '141a681b80024953b9b7865284b9fece'.
2023-11-10 23:27:25 DEBUG    rasa.engine.storage.local_model_storage  - Resource 'train_JiebaTokenizer0' was requested for reading.  # train_JiebaTokenizer0
2023-11-10 23:27:25 DEBUG    rasa.engine.storage.resource  - Skipped caching resource 'train_JiebaTokenizer0' as no persisted data was found.  # 跳过缓存资源'train_JiebaTokenizer0',因为找不到持久化数据。
2023-11-10 23:27:25 DEBUG    rasa.engine.caching  - Caching output of type 'Resource' succeeded.  # 缓存类型为'Resource'的输出成功。
2023-11-10 23:27:26 DEBUG    rasa.engine.graph  - Hook 'LoggingHook.on_before_node' running for node 'run_JiebaTokenizer0'.  # run_JiebaTokenizer0
2023-11-10 23:27:26 DEBUG    rasa.engine.graph  - Hook 'TrainingHook.on_before_node' running for node 'run_JiebaTokenizer0'.  # run_JiebaTokenizer0
2023-11-10 23:27:26 DEBUG    rasa.engine.training.fingerprinting  - Calculated fingerprint_key '496a8741f1dfb458bbfedb535d343623' for class 'JiebaTokenizer'.  # 计算类'JiebaTokenizer'的指纹密钥
2023-11-10 23:27:26 DEBUG    rasa.engine.graph  - Node 'run_JiebaTokenizer0' loading 'JiebaTokenizer.load' and kwargs: '{'resource': Resource(name='train_JiebaTokenizer0', output_fingerprint='141a681b80024953b9b7865284b9fece')}'.
2023-11-10 23:27:26 DEBUG    rasa.engine.graph  - Node 'run_JiebaTokenizer0' running 'JiebaTokenizer.process_training_data'.  # run_JiebaTokenizer0

# jieba分词
Building prefix dict from the default dictionary ...
2023-11-10 23:27:26 DEBUG    jieba  - Building prefix dict from the default dictionary ...
Loading model from cache C:\Users\ADMINI~1\AppData\Local\Temp\jieba.cache
2023-11-10 23:27:26 DEBUG    jieba  - Loading model from cache C:\Users\ADMINI~1\AppData\Local\Temp\jieba.cache
Loading model cost 1.116 seconds.
2023-11-10 23:27:27 DEBUG    jieba  - Loading model cost 1.116 seconds.
Prefix dict has been built successfully.
2023-11-10 23:27:27 DEBUG    jieba  - Prefix dict has been built successfully.

2023-11-10 23:27:27 DEBUG    rasa.engine.graph  - Hook 'LoggingHook.on_after_node' running for node 'run_JiebaTokenizer0'.
2023-11-10 23:27:27 DEBUG    rasa.engine.graph  - Hook 'TrainingHook.on_after_node' running for node 'run_JiebaTokenizer0'.
2023-11-10 23:27:27 DEBUG    rasa.engine.training.hooks  - Caching 'TrainingData' with fingerprint_key: '496a8741f1dfb458bbfedb535d343623' and output_fingerprint '1baa8435dc0351e013e3b8f3635e83d6'.
2023-11-10 23:27:27 DEBUG    rasa.engine.graph  - Hook 'LoggingHook.on_before_node' running for node 'run_LanguageModelFeaturizer1'.
2023-11-10 23:27:27 DEBUG    rasa.engine.graph  - Hook 'TrainingHook.on_before_node' running for node 'run_LanguageModelFeaturizer1'.
2023-11-10 23:27:27 DEBUG    rasa.engine.training.fingerprinting  - Calculated fingerprint_key 'de5a4adf999a20fb8e5716903003508c' for class 'LanguageModelFeaturizer'.
2023-11-10 23:27:27 DEBUG    rasa.engine.graph  - Node 'run_LanguageModelFeaturizer1' loading 'LanguageModelFeaturizer.load' and kwargs: '{}'.
2023-11-10 23:27:28 DEBUG    rasa.nlu.featurizers.dense_featurizer.lm_featurizer  - Loading Tokenizer and Model for bert

2023-11-10 23:27:32 DEBUG    rasa.engine.graph  - Node 'run_LanguageModelFeaturizer1' running 'LanguageModelFeaturizer.process_training_data'.
2023-11-10 23:27:41 DEBUG    rasa.engine.graph  - Hook 'LoggingHook.on_after_node' running for node 'run_LanguageModelFeaturizer1'.
2023-11-10 23:27:41 DEBUG    rasa.engine.graph  - Hook 'TrainingHook.on_after_node' running for node 'run_LanguageModelFeaturizer1'.
2023-11-10 23:27:41 DEBUG    rasa.engine.training.hooks  - Caching 'TrainingData' with fingerprint_key: 'de5a4adf999a20fb8e5716903003508c' and output_fingerprint '1192d8329eb2a6d87f6e965765d10871'.
2023-11-10 23:27:41 DEBUG    rasa.engine.graph  - Hook 'LoggingHook.on_before_node' running for node 'train_DIETClassifier2'.
2023-11-10 23:27:41 INFO     rasa.engine.training.hooks  - Starting to train component 'DIETClassifier'.
2023-11-10 23:27:41 DEBUG    rasa.engine.graph  - Hook 'TrainingHook.on_before_node' running for node 'train_DIETClassifier2'.
2023-11-10 23:27:41 DEBUG    rasa.engine.training.fingerprinting  - Calculated fingerprint_key '7d66b69a551ffbc2a45237a02ffc5aa7' for class 'DIETClassifier'.
2023-11-10 23:27:41 DEBUG    rasa.engine.graph  - Node 'train_DIETClassifier2' loading 'DIETClassifier.create' and kwargs: '{}'.

2023-11-10 23:27:41 DEBUG    rasa.engine.graph  - Node 'train_DIETClassifier2' running 'DIETClassifier.train'.
2023-11-10 23:27:41 DEBUG    rasa.nlu.classifiers.diet_classifier  - No label features found. Computing default label features.
2023-11-10 23:27:41 DEBUG    rasa.nlu.classifiers.diet_classifier  - You specified 'DIET' to train entities, but no entities are present in the training data. Skipping training of entities.
2023-11-10 23:27:42 DEBUG    rasa.nlu.classifiers.diet_classifier  - Following metrics will be logged during training:
2023-11-10 23:27:42 DEBUG    rasa.nlu.classifiers.diet_classifier  -   t_loss (total loss)
2023-11-10 23:27:42 DEBUG    rasa.nlu.classifiers.diet_classifier  -   i_acc (intent acc)
2023-11-10 23:27:42 DEBUG    rasa.nlu.classifiers.diet_classifier  -   i_loss (intent loss)
2023-11-10 23:27:42 DEBUG    rasa.utils.tensorflow.data_generator  - The provided batch size is a list, this data generator will use a linear increasing batch size.

Epochs:   0%|          | 0/100 [00:00<?, ?it/s]
Epochs: 100%|██████████| 100/100 [01:26<00:00,  1.15it/s, t_loss=0.258, i_loss=0.0123, i_acc=1]
2023-11-10 23:29:09 DEBUG    rasa.engine.storage.local_model_storage  - Resource 'train_DIETClassifier2' was requested for writing.
2023-11-10 23:29:09 DEBUG    rasa.engine.storage.local_model_storage  - Resource 'train_DIETClassifier2' was persisted.
2023-11-10 23:29:09 DEBUG    rasa.engine.graph  - Hook 'LoggingHook.on_after_node' running for node 'train_DIETClassifier2'.
2023-11-10 23:29:09 INFO     rasa.engine.training.hooks  - Finished training component 'DIETClassifier'.
2023-11-10 23:29:09 DEBUG    rasa.engine.graph  - Hook 'TrainingHook.on_after_node' running for node 'train_DIETClassifier2'.
2023-11-10 23:29:09 DEBUG    rasa.engine.training.hooks  - Caching 'Resource' with fingerprint_key: '7d66b69a551ffbc2a45237a02ffc5aa7' and output_fingerprint '9a50714386a54eebbd0b5eb4ab2fd23c'.
2023-11-10 23:29:09 DEBUG    rasa.engine.storage.local_model_storage  - Resource 'train_DIETClassifier2' was requested for reading.
2023-11-10 23:29:09 DEBUG    rasa.engine.caching  - Caching output of type 'Resource' succeeded.
2023-11-10 23:29:11 DEBUG    rasa.engine.graph  - Hook 'LoggingHook.on_before_node' running for node 'train_ResponseSelector3'.
2023-11-10 23:29:11 INFO     rasa.engine.training.hooks  - Starting to train component 'ResponseSelector'.
2023-11-10 23:29:11 DEBUG    rasa.engine.graph  - Hook 'TrainingHook.on_before_node' running for node 'train_ResponseSelector3'.
2023-11-10 23:29:11 DEBUG    rasa.engine.training.fingerprinting  - Calculated fingerprint_key '0e102b0ba0b459b1556ae9eb4aaac987' for class 'ResponseSelector'.
2023-11-10 23:29:11 DEBUG    rasa.engine.graph  - Node 'train_ResponseSelector3' loading 'ResponseSelector.create' and kwargs: '{}'.
2023-11-10 23:29:11 DEBUG    rasa.engine.graph  - Node 'train_ResponseSelector3' running 'ResponseSelector.train'.
2023-11-10 23:29:11 INFO     rasa.nlu.selectors.response_selector  - Retrieval intent parameter was left to its default value. This response selector will be trained on training examples combining all retrieval intents.
2023-11-10 23:29:11 DEBUG    rasa.nlu.classifiers.diet_classifier  - No label features found. Computing default label features.
2023-11-10 23:29:11 DEBUG    rasa.nlu.selectors.response_selector  - Following metrics will be logged during training:
2023-11-10 23:29:11 DEBUG    rasa.nlu.selectors.response_selector  -   t_loss (total loss)
2023-11-10 23:29:11 DEBUG    rasa.nlu.selectors.response_selector  -   r_acc (response acc)
2023-11-10 23:29:11 DEBUG    rasa.nlu.selectors.response_selector  -   r_loss (response loss)
2023-11-10 23:29:11 DEBUG    rasa.utils.tensorflow.data_generator  - The provided batch size is a list, this data generator will use a linear increasing batch size.
Epochs: 100%|██████████| 300/300 [00:39<00:00,  7.55it/s, t_loss=2.93, r_loss=1.17, r_acc=1]
2023-11-10 23:29:51 DEBUG    rasa.engine.storage.local_model_storage  - Resource 'train_ResponseSelector3' was requested for writing.
2023-11-10 23:29:51 DEBUG    rasa.engine.storage.local_model_storage  - Resource 'train_ResponseSelector3' was persisted.
2023-11-10 23:29:51 DEBUG    rasa.engine.storage.local_model_storage  - Resource 'train_ResponseSelector3' was requested for writing.
2023-11-10 23:29:51 DEBUG    rasa.engine.storage.local_model_storage  - Resource 'train_ResponseSelector3' was persisted.
2023-11-10 23:29:51 DEBUG    rasa.engine.graph  - Hook 'LoggingHook.on_after_node' running for node 'train_ResponseSelector3'.
2023-11-10 23:29:51 INFO     rasa.engine.training.hooks  - Finished training component 'ResponseSelector'.
2023-11-10 23:29:51 DEBUG    rasa.engine.graph  - Hook 'TrainingHook.on_after_node' running for node 'train_ResponseSelector3'.
2023-11-10 23:29:51 DEBUG    rasa.engine.training.hooks  - Caching 'Resource' with fingerprint_key: '0e102b0ba0b459b1556ae9eb4aaac987' and output_fingerprint '300fbcfe9f004bf2a6870e283e7b4f92'.
2023-11-10 23:29:51 DEBUG    rasa.engine.storage.local_model_storage  - Resource 'train_ResponseSelector3' was requested for reading.
2023-11-10 23:29:51 DEBUG    rasa.engine.caching  - Caching output of type 'Resource' succeeded.
2023-11-10 23:29:51 DEBUG    rasa.engine.storage.local_model_storage  - Start to created model package for path 'models\nlu-20231110-232632-arid-seasoning.tar.gz'.
2023-11-10 23:29:58 DEBUG    rasa.engine.storage.local_model_storage  - Model package created in path 'models\nlu-20231110-232632-arid-seasoning.tar.gz'.
Your Rasa model is trained and saved at 'models\nlu-20231110-232632-arid-seasoning.tar.gz'.
2023-11-10 23:29:58 DEBUG    rasa.telemetry  - Skipping telemetry reporting: no license hash found.

Process finished with exit code 0

参考文献:
[1]《Rasa实战》

标签:11,10,ResponseSelector,rasa,23,FAQ,校园,engine,DEBUG
From: https://www.cnblogs.com/shengshengwang/p/17826529.html

相关文章

  • 基于微信小程序的校园餐饮配送系统
    (文章目录)前言:heartpulse:博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌:heartpulse:......
  • 校园安防监控升级改造方案:如何实现设备利旧上云与AI视频识别感知?
    一、背景与需求分析随着现代安防监控科技的兴起和在各行各业的广泛应用,监控摄像头成为众所周知的产品,也为人类的工作生活提供了很大的便利。由于科技的发达,监控摄像头的升级换代也日益频繁。每年都有不计其数的摄像头被拆掉闲置,有的进了库房,有的被扔进了垃圾桶。其实很多被淘汰遗弃......
  • AIBPM FAQ
    1.syncSqlitestructurestartedsyncSqlitestructuresucceedsyncdatastartedtable:ai_templatesyncdatasucceedtable:ad_dictionary_typesyncdatasucceedtable:ad_dictionarysyncdatasucceedtable:ad_usersyncdatasucceedtable:ad_u......
  • 智慧校园管理平台源码,智慧校园小程序源码,智慧校园电子班牌系统源码
     智慧校园是指以物联网、云计算、大数据分析等新技术为核心技术,提供智慧化、数据化、网络化、协作一体化的教学、科研、管理和生活等各类服务,促进信息技术与教育教学有效深度融合,提高学生学习效果,最终实现智慧化教学和管理的校园模式。1、数字教学,教师直接通过APP教学平台布置作......
  • 基于PLC的校园作息时间控制系统——文档
    本设计采用的是PLC控制方式。配置如下:本次PLC控制器采用了三菱的Fx2N一48MRPLC。它拥有24个输入点和24个输出点,可轻易控制继电器等输出设备,实现作息时间的控制。为了让PLC控制器更加精准地控制时间点,设计了5个数码管,其中2个用于显示小时,2个用于显示分钟,一个用于显示星期几。通过......
  • 【Java】智慧校园云SaaS平台源码带微信小程序
    智慧校园以互联网为基础,以“大数据+云服务”为核心,融合校园教学、管理、生活软硬件平台,定义智慧校园新生活。智慧校园管理平台管理者、教师、学生、家长提供一站式智慧校园解决方案,实现校园管理智能化、校园生活一体化、校园设施数字化、课堂教学生动化、家校沟通无缝化。一、智慧......
  • 基于Android的XX校园交流-计算机毕业设计源码+LW文档
    摘  要随着互联网时代的发展,传统管理技术已无法高效,便捷地管理信息。为了迎合时代需求,优化管理效率,各种各样的管理系统应运而生,随着各行业的不断发展,XX校园交流APP建设也逐渐进入了信息化的进程。这个App的设计主要包括前台页面的设计和方便用户互动的后端数据库,而前端软件的......
  • 在使用docker-compose build一个faq服务Helpy 时报错
    Helpy时报错如下:ERROR:failedtosolve:process"/bin/sh-cbundleinstall--withouttestdevelopment"didnotcompletesuccessfully:exitcode:11ERROR:Service'helpy'failedtobuild:Buildfailed有两种解释这种报错1、修改dockerfile ruby:2.5,然后......
  • 校园跑腿
    最近做了一个自研项目,校园跑腿,就是提供一个微信小程序,“图颜帮忙”在各大高校给学生使用。当有同学需要别人拿快递,拿外卖,代课等跑腿业务时,可以在上面发布任务。 然后有一个骑手端(接单员),同样也是学生,比如他是A栋,然后自己有快递要取,就会在小程序上搜索A栋的单子,然后一起都取了,赚......
  • 顺通数字化校园信息管理系统
    随着信息技术的不断发展,数字化校园信息管理系统正在成为现代学校管理的重要工具。顺通数字化校园信息管理系统是一种综合性的解决方案,旨在帮助学校实现信息化管理,提升了学校管理效率和教育质量。顺通数字化校园信息管理系统涵盖了教务管理、学生信息管理、教师管理、考勤管理、课......