信号和中断
- “中断”是从I/O设备或协处理器发送到CPU的外部请求,它将CPU从正常执行转移到中断处理。
- 与发送给CPU的中断请求一样,“信号”是发送给进程的请求,将进程从正常执行转移到中断处理。
- “中断”是发送给“进程”的事件,它将“进程”从正常活动转移到其他活动,称为“中断处理”。“进程”可在完成“中断”处理后恢复正常活动。
- 根据来源,中断可分为三类:
- 来自硬件的中断
- 来自其他人的中断
- 自己造成的中断
- 按照紧急程度,中断可分为以下几类:
- 不可屏蔽(NMI)
- 可屏蔽
- 进程硬件中断
- 来自硬件的中断
- 来自其他处理器的中断
- 自己造成的中断
- Unix/Linux信号示例
- ctrl+c导致当前运行的进程终止
- nohup a.out &命令在后台运行一个程序
- 可以使用sh命令kill pid (or kill -s 9 pid)
Unix/Linux中的信号处理
- Unix/Linux支持的31种信号
#define SIGINT 2
#define SIGQUIT 3
#define SIGILL 4
#define SIGTRAP 5
#define SIGABRT 6
#define SIGIOT 6
#define SIGBUS 7
#define SIGFPE 8
#define SIGKILL 9
#define SIGUSR1 10
#define SIGSEGV 11
#define SIGUSR2 12
#define SIGPIPE 13
#define SIGALRM 14
#define SIGTERM 15
#define SIGSTKFLT 16
#define SIGCHLD 17
#define SIGCONT 18
#define SIGSTOP 19
#define SIGTSTP 20
#dpfine STGTTTN 21
#define SIGTTOU 22
#define SIGURG 23
#define SIGXCPU 24
#define SIGXFSZ 25
#define SIGVTALRM 26
#define SIGPROF 27
#define SIGWINCH 28
#define SIGPOLL 29
#define SIGPWR 30
#define SIGSYS 31
信号的来源
- 来自硬件中断的信号:在执行过程中,一些硬件中断被转换为信号发送给进程硬件信号示例是中断键(Ctrl+C),它产生一个SIGINT(2)信号。
- 间隔定时器,当他的时间到期时,会生成一个SIGALRM(14)、SIGTALRM(26)或SIGPROF(27)信号。
- 其他硬件错误,如总线错误、IO陷进。
- 来自异常的信号:常见的陷阱信号有SIGFPE(8),表示浮点异常(除以0),最常见也是最可怕的时SIGSEGV(11),表示段错误。
- 来自其他进程的信号:进程可以使用kill(pid,sig)系统调用向pid标识的目标进程发送信号。读者可以尝试以下实验。在 Linux 下,运行简单的C程序
main(){ while(1); }
- 使进程无限循环。从另一个(X-window)终端,使用ps -u查找循环进程pid。然后输入sh命令kill -s 11 pid循环进程会因为段错误而死亡。当某进程被某个信号终止时,它的exitValue就包含这个信号编号。父进程sh只是将死亡子进程的信号编号转换为一个错误字符串。
信号处理函数
- 每个进程PROC 都有一个信号处理数组 int sig[32]。Sig[32]数组的每个条目都指定了如何处理相应的信号,其中0表示 DEFault(默认),1表示 IGNore(忽略).其他非零值表示用户模式下预先安装的信号捕捉(处理)函数。
安装信号捕捉函数
sigaction()的使用示例
#include <unistd.h>
#include <string.h>
#include <signal.h>
//#include <siginfo.h>
void handler(int sig, siginfo_t *siginfo, void *context)
{
printf("handler: sig=%d from PID=%d UID=%d\n",sig, siginfo->si_pid, siginfo->si_uid);
}
int main(int argc, char *argv[])
{
struct sigaction act;
memset(&act, 0, sizeof(act));
act.sa_sigaction = &handler;
act.sa_flags = SA_SIGINFO;
sigaction(SIGTERM, &act, NULL);
printf("proc PID=%d looping\n", getpid());
printf ("enter kill PID to send SIGTERM signal to it\n");
while(1)
{
sleep (10);
}
}
信号处理步骤
- 当某进程处于内核模式时,会检查信号并处理未完成的信号。如果某信号有用户安装的捕捉函数,该进程会先清除信号,获取捕捉函数地址,对于大多数陷阱信号,则将已安装的捕捉函数重置为DEFault。然后,它会在用户模式下返回,以执行捕捉函数,以这种方式篡改返回路径。当捕捉函数结束时,它会返回到最初的中断点,即它最后进入内核模式的地方。因此,该进程会先迁回执行捕捉函数,然后再恢复正常执行。
- 重置用户安装的信号捕捉函数:用户安装的陷阱相关信号捕捉函数用于处理用户代码中的陷阱错误。由于捕捉函数也在用户模式下执行,因此可能会再次出现同样的错误。如果是这样,该进程最终会陷入无限循环,一直在用户模式和内核模式之间跳跃。为了防止这种情况,Unix内核通常会在允许进程执行捕捉函数之前先将处理函数重置为 DEFault。这意味着用户安装的捕捉函数只对首次出现的信号有效。若要捕捉再次出现的同一信号,则必须重新安装捕捉函数。但是,用户安装的信号捕捉函数的处理方法并不都一样,在不同Unix版本中会有所不同。例如,在 BSD Unix中,信号处理函数不会被重置,但是该信号在执行信号捕捉函数时会被阻塞。
- 信号和唤醒:在Unix/Lintx内核中有两种SLEEP进程;深度休眠进程和浅度休眠进程。前一种进程不可中断,而后一种进程可由信号中断。如果某进程处于不可中断的SLEEP状态,到达的信号(必须来自硬件中断或其他进程)不会唤醒进程。如果它处于可中断的SLEEP状态,到达的信号将会唤醒它。例如,当某进程等待终端输入时,它会以低优先级休眠,这种休眠是可中断的,SIGINT这类信号即可唤醒它。
苏格拉底挑战