(1)先证明\(x_n>0\),使用归纳法,假设\(x_n>0\),\(x_n=x_{n+1}+\ln(1+x_{n+1})\)
设\(f(x)=x+ln(1+x),f'(x)=1+\frac{1}{1+x}>0,f(x)\)在\((0,+\inf)\)单调递增
\(f(0)=0,x_n>0,f(x_{n+1})=x_n>f(0)>0\)
再证明\(x_n>x_{n+1},x_n-x_{n+1}=\ln(1+x_{n+1}),x_{n+1}+1>1\)所以\(x_n-x_{n+1}>0,x_n>x_{n+1}\)
(2)\(2x_{n+1}-x_n<\frac{x_nx_{n+1}}{2},x_n=x_{n+1}+\ln(1+x_{n+1})\)
所以\(x_{n+1}-ln(1+x_{n+1})<\frac{x_{n+1}^2+x_{n+1}\ln(1+x_{n+1})}{2},x_{n+1}^2+(x_{n+1}+2)\ln(1+x_{n+1})-2x_{n+1}>0\)
构造\(g(x)=x^2-2x+(x+2)\ln(x+1),g'(x)=2x-1+\frac{1}{x+1}+ln(x+1),g''(x)=2+\frac{1}{x+1}-\frac{1}{(x+1)^2}\)
当\(x>0,(x+2)(2x+1)>0\)所以\(g'(x)\)在\((0,+\inf)\)单调递增
\(g'(0)=0\),所以当\(x>0,g'(x)>0\),所以\(g(x)\)在\((0,+\inf)\)单调递增,\(g(0)=0\),所以当\(x>0,g(x)>0\)
根据第一问结论,\(x_{n+1}>0,f(x_{n+1})>0\),得证
(3)\(n=1\)显然成立。
使用数学归纳法,假设对于所有\(i=1...n\)结论成立
根据经典不等式,\(x_n=x_{n+1}+\ln(1+x_{n+1})<2x_{n+1}\)
所以\(\frac{1}{2}<\frac{x_{n+1}}{x_{n}}\)
所以\(\frac{1}{2^n}<\frac{x_{n+1}}{x_1}=x_{n+1}\)(累乘法)
\(x_{n+1}+\ln(1+x_{n+1})=x_n<\frac{1}{2^{n-2}}\)