首页 > 其他分享 >Transformer

Transformer

时间:2023-10-10 18:22:36浏览次数:35  
标签:hiddens Transformer self torch num valid size

import math
import torch
from torch import nn
import matplotlib.pyplot as plt
from d2l import torch as d2l


def sequence_mask(X, valid_len, value=0):
    """在序列中屏蔽不相关的项"""
    max_len = X.size(1)
    mask = torch.arange((max_len), dtype=torch.float32,
                        device=X.device)[None, :] < valid_len[:, None]
    X[~mask] = value
    return X


def masked_softmax(x, valid_lens):
    if valid_lens is None:
        return nn.functional.softmax(x, dim=-1)
    else:
        shape = x.shape
        if valid_lens.dim() == 1:
            valid_lens = torch.repeat_interleave(valid_lens, shape[1])
        else:
            valid_lens = valid_lens.reshape(-1)

        # 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
        x = sequence_mask(x.reshape(-1, shape[-1]), valid_lens, value=-1e6)

        return nn.functional.softmax(x.reshape(shape), dim=-1)


x = torch.ones(2, 3, 4)
print(masked_softmax(torch.rand(2, 2, 4), torch.tensor([2, 3])))


# 加性注意力:

class AdditiveAttention(nn.Module):
    """加性注意力"""

    def __init__(self, key_size, query_size, num_hidden, dropout, **kwargs):
        super(AdditiveAttention, self).__init__(**kwargs)
        self.w_k = nn.Linear(key_size, num_hidden, bias=False)
        self.w_q = nn.Linear(query_size, num_hidden, bias=False)
        self.w_v = nn.Linear(num_hidden, 1, bias=False)
        self.dropout = nn.Dropout(dropout)

    def forward(self, queries, keys, values, valid_lens):
        queries, keys = self.w_q(queries), self.w_k(keys)
        features = queries.unsqueeze(2) + keys.unsqueeze(1)
        features = torch.tanh(features)
        scores = self.w_v(features).squeeze(-1)

        self.attention_weights = masked_softmax(scores, valid_lens)
        return torch.bmm(self.dropout(self.attention_weights), values)


queries, keys = torch.normal(0, 1, (2, 1, 20)), torch.ones((2, 10, 2))

print("queries:")
print(queries)
print("keys:")
print(keys)

values = torch.arange(40, dtype=torch.float32).reshape(1, 10, 4).repeat(2, 1, 1)
print("values:")
print(values)

valid_lens = torch.tensor([2, 6])

attention = AdditiveAttention(key_size=2, query_size=20, num_hidden=8,
                              dropout=0.1)

attention.eval()
print(attention(queries, keys, values, valid_lens))

d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),
                  xlabel='Keys', ylabel='Queries')
plt.show()


# 点积模型:

class DotProductAttention(nn.Module):
    def __init__(self, dropout, **kwargs):
        super(DotProductAttention, self).__init__(**kwargs)
        self.dropout = nn.Dropout(dropout)

    # queries的形状:(batch_size,查询的个数,d)
    # keys的形状:(batch_size,“键-值”对的个数,d)
    # values的形状:(batch_size,“键-值”对的个数,值的维度)
    # valid_lens的形状:(batch_size,)或者(batch_size,查询的个数)

    def forward(self, queries, keys, values, valid_lens=None):
        d = queries.shape[-1]
        scores = torch.bmm(queries, keys.transpose(1, 2) / math.sqrt(d))
        self.attention_weights = masked_softmax(scores, valid_lens)
        return torch.bmm(self.dropout(self.attention_weights), values)


queries = torch.normal(0, 1, (2, 1, 2))
attention = DotProductAttention(dropout=0.5)
attention.eval()
print(attention(queries, keys, values, valid_lens))

d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),
                  xlabel='Keys', ylabel='Queries')
plt.show()


import torch
from torch import nn
from d2l import torch as d2l
import matplotlib.pyplot as plt


# @save
class AttentionDecoder(d2l.Decoder):
    """带有注意力机制解码器的基本接口"""

    def __init__(self, **kwargs):
        super(AttentionDecoder, self).__init__(**kwargs)

    @property
    def attention_weights(self):
        raise NotImplementedError


class Seq2SeqAttentionDecoder(AttentionDecoder):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 dropout=0, **kwargs):
        super(Seq2SeqAttentionDecoder, self).__init__(**kwargs)
        self.attention = d2l.AdditiveAttention(num_hiddens, num_hiddens, num_hiddens, dropout)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size + num_hiddens, num_hiddens, num_layers,
                          dropout=dropout)
        self.dense = nn.Linear(num_hiddens, vocab_size)

    def init_state(self, enc_outputs, enc_valid_lens, *args):
        # outputs的形状为(batch_size,num_steps,num_hidden).
        # hidden_state的形状为(num_layers,batch_size,num_hidden)
        outputs, hidden_state = enc_outputs
        return (outputs.permute(1, 0, 2), hidden_state, enc_valid_lens)

    def forward(self, x, state):
        # enc_outputs的形状为(batch_size,num_steps,num_hidden).
        # hidden_state的形状为(num_layers,batch_size,
        # num_hidden)
        enc_outputs, hidden_state, enc_valid_lens = state
        # 输出X的形状为(num_steps,batch_size,embed_size)
        x = self.embedding(x).permute(1, 0, 2)
        outputs, self._attention_weights = [], []
        for x_ in x:
            query = torch.unsqueeze(hidden_state[-1], dim=1)  # query的形状为(batch_size,1,num_hidden)
            context = self.attention(query, enc_outputs, enc_outputs, enc_valid_lens)
            # context的形状为(batch_size,1,num_hidden)
            x_ = torch.cat((context, torch.unsqueeze(x_, dim=1)), dim=-1)
            # 将x变形为(1,batch_size,embed_size+num_hidden)
            out, hidden_state = self.rnn(x_.permute(1, 0, 2), hidden_state)
            outputs.append(out)
            self._attention_weights.append(self.attention.attention_weights)
        # 全连接层变换后,outputs的形状为
        # (num_steps,batch_size,vocab_size)
        outputs = self.dense(torch.cat(outputs, dim=0))
        return outputs.permute(1, 0, 2), [enc_outputs, hidden_state, enc_valid_lens]

    @property
    def attention_weights(self):
        return self._attention_weights


encoder = d2l.Seq2SeqEncoder(vocab_size=10, embed_size=8, num_hiddens=16,
                             num_layers=2)
encoder.eval()

decoder = Seq2SeqAttentionDecoder(vocab_size=10, embed_size=8, num_hiddens=16,
                                  num_layers=2)
decoder.eval()

x = torch.zeros((4, 7), dtype=torch.long)
state = decoder.init_state(encoder(x), None)
output, state = decoder(x, state)
print(output.shape, len(state), state[0].shape, len(state[1]), state[1][0].shape)

embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.1
batch_size, num_steps = 64, 10
lr, num_epochs, device = 0.005, 250, d2l.try_gpu()
tion_weight_seq = d2l.predict_seq2seq(
        net, eng, src_vocab
# train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)
# encoder = d2l.Seq2SeqEncoder(
#     len(src_vocab), embed_size, num_hiddens, num_layers, dropout)
# decoder = Seq2SeqAttentionDecoder(
#     len(tgt_vocab), embed_size, num_hiddens, num_layers, dropout)
# net = d2l.EncoderDecoder(encoder, decoder)
# print(d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device))
#
# plt.show()
# engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
# fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
# for eng, fra in zip(engs, fras):
#     translation, dec_atten, tgt_vocab, num_steps, device, True)
    print(f'{eng} => {translation}, ',
          f'bleu {d2l.bleu(translation, fra, k=2):.3f}')

Transformer

多头注意力

import math
import torch
from torch import nn
from d2l import torch as d2l


# @save
def transpose_qkv(X, num_heads):
    """为了多注意力头的并行计算而变换形状"""
    # 输入X的形状:(batch_size,查询或者“键-值”对的个数,num_hiddens)
    # 输出X的形状:(batch_size,查询或者“键-值”对的个数,num_heads,
    # num_hiddens/num_heads)
    X = X.reshape(X.shape[0], X.shape[1], num_heads, -1)

    # 输出X的形状:(batch_size,num_heads,查询或者“键-值”对的个数,
    # num_hiddens/num_heads)
    X = X.permute(0, 2, 1, 3)

    # 最终输出的形状:(batch_size*num_heads,查询或者“键-值”对的个数,
    # num_hiddens/num_heads)
    return X.reshape(-1, X.shape[2], X.shape[3])


# @save
def transpose_output(X, num_heads):
    """逆转transpose_qkv函数的操作"""
    X = X.reshape(-1, num_heads, X.shape[1], X.shape[2])
    X = X.permute(0, 2, 1, 3)
    return X.reshape(X.shape[0], X.shape[1], -1)


class MultiHeadAttention(nn.Module):
    """多头注意力"""

    def __init__(self, key_size, query_size, value_size, num_hiddens,
                 num_heads, dropout, bias=False, **kwargs):
        super(MultiHeadAttention, self).__init__(**kwargs)
        self.num_heads = num_heads
        self.attention = d2l.DotProductAttention(dropout)
        self.W_q = nn.Linear(query_size, num_hiddens, bias=bias)
        self.W_k = nn.Linear(key_size, num_hiddens, bias=bias)
        self.W_v = nn.Linear(value_size, num_hiddens, bias=bias)
        self.W_o = nn.Linear(num_hiddens, num_hiddens, bias=bias)

    # queries,keys,values的形状:
    # (batch_size,查询或者“键-值”对的个数,num_hiddens)
    # valid_lens 的形状:
    # (batch_size,)或(batch_size,查询的个数)
    # 经过变换后,输出的queries,keys,values 的形状:
    # (batch_size*num_heads,查询或者“键-值”对的个数,
    # num_hiddens/num_heads)
    def forward(self, queries, keys, values, valid_lens):
        queries = transpose_qkv(self.W_q(queries), self.num_heads)
        keys = transpose_qkv(self.W_k(keys), self.num_heads)
        values = transpose_qkv(self.W_v(values), self.num_heads)
        if valid_lens is not None:
            # 在轴0,将第一项(标量或者矢量)复制num_heads次,
            # 然后如此复制第二项,然后诸如此类。
            valid_lens = torch.repeat_interleave(
                valid_lens, repeats=self.num_heads, dim=0)
        # output的形状:(batch_size*num_heads,查询的个数,
        # num_hiddens/num_heads)
        output = self.attention(queries, keys, values, valid_lens)

        # output_concat的形状:(batch_size,查询的个数,num_hiddens)
        output_concat = transpose_output(output, self.num_heads)
        return self.W_o(output_concat)

num_hiddens, num_heads = 100, 5
attention = MultiHeadAttention(num_hiddens, num_hiddens, num_hiddens,
                               num_hiddens, num_heads, 0.5)
print(attention.eval())

batch_size, num_queries = 2, 4
num_kvpairs, valid_lens =  6, torch.tensor([3, 2])
X = torch.ones((batch_size, num_queries, num_hiddens))
Y = torch.ones((batch_size, num_kvpairs, num_hiddens))
print(attention(X, Y, Y, valid_lens).shape)

import math
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l

class PositionWiseFFN(nn.Module):
    def __init__(self,ffn_num_input,ffn_num_hiddens,ffn_num_output,**kwargs):
        super(PositionWiseFFN,self).__init__(**kwargs)
        self.dense1=nn.Linear(ffn_num_input,ffn_num_hiddens)
        self.relu=nn.ReLU()
        self.dense2=nn.Linear(ffn_num_hiddens,ffn_num_output)

    def forward(self,x):
        return self.dense2(self.relu(self.dense1(x)))

ffn = PositionWiseFFN(4, 4, 8)
ffn.eval()
print(ffn(torch.ones((2, 3, 4)))[0])

ln = nn.LayerNorm(2)
bn = nn.BatchNorm1d(2)
X = torch.tensor([[1, 2], [2, 3]], dtype=torch.float32)
# 在训练模式下计算X的均值和方差
print('layer norm:', ln(X), '\nbatch norm:', bn(X))

# 用残差连接和层归一化

class AddNorm(nn.Module):
    def __init__(self,normalized_shape,dropout,**kwargs):
        super(AddNorm).__init__(**kwargs)
        self.dropout=nn.Dropout(dropout)
        self.ln=nn.LayerNorm(normalized_shape)

    def forward(self,x,y):
        return self.ln(self.dropout(y)+x) #输入和输出相加然后进入下一层

# 实现编码器中的一层

#@save
class EncoderBlock(nn.Module):
    """Transformer编码器块"""
    def __init__(self, key_size, query_size, value_size, num_hiddens,
                 norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
                 dropout, use_bias=False, **kwargs):
        super(EncoderBlock, self).__init__(**kwargs)
        self.attention = d2l.MultiHeadAttention(
            key_size, query_size, value_size, num_hiddens, num_heads, dropout,
            use_bias)
        self.addnorm1 = AddNorm(norm_shape, dropout)
        self.ffn = PositionWiseFFN(
            ffn_num_input, ffn_num_hiddens, num_hiddens)
        self.addnorm2 = AddNorm(norm_shape, dropout)

    def forward(self, X, valid_lens):
        Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))
        return self.addnorm2(Y, self.ffn(Y))

X = torch.ones((2, 100, 24))
valid_lens = torch.tensor([3, 2])
encoder_blk = EncoderBlock(24, 24, 24, 24, [100, 24], 24, 48, 8, 0.5)
encoder_blk.eval()
print(encoder_blk(X, valid_lens).shape)

#@save
class TransformerEncoder(d2l.Encoder):
    """Transformer编码器"""
    def __init__(self, vocab_size, key_size, query_size, value_size,
                 num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,
                 num_heads, num_layers, dropout, use_bias=False, **kwargs):
        super(TransformerEncoder, self).__init__(**kwargs)
        self.num_hiddens = num_hiddens
        self.embedding = nn.Embedding(vocab_size, num_hiddens)
        self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
        self.blks = nn.Sequential()
        for i in range(num_layers):
            self.blks.add_module("block"+str(i),
                EncoderBlock(key_size, query_size, value_size, num_hiddens,
                             norm_shape, ffn_num_input, ffn_num_hiddens,
                             num_heads, dropout, use_bias))

    def forward(self, X, valid_lens, *args):
        # 因为位置编码值在-1和1之间,
        # 因此嵌入值乘以嵌入维度的平方根进行缩放,
        # 然后再与位置编码相加。
        X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
        self.attention_weights = [None] * len(self.blks)
        for i, blk in enumerate(self.blks):
            X = blk(X, valid_lens)
            self.attention_weights[
                i] = blk.attention.attention.attention_weights
        return X

encoder = TransformerEncoder(
    200, 24, 24, 24, 24, [100, 24], 24, 48, 8, 2, 0.5)
encoder.eval()

 

标签:hiddens,Transformer,self,torch,num,valid,size
From: https://www.cnblogs.com/o-Sakurajimamai-o/p/17755399.html

相关文章

  • Personalized Transformer for Explainable Recommendation论文阅读笔记
    PersonalizedTransformerforExplainableRecommendation论文阅读笔记摘要​ 自然语言生成的个性化在大量任务中都起着至关重要的作用。比如可解释的推荐,评审总结和对话系统等。在这些任务中,用户和项目ID是个性化的重要标识符。虽然Transfomer拥有强大的语言建模能力,但是没有......
  • ICCV 2023 | 当尺度感知调制遇上Transformer,会碰撞出怎样的火花?
    作者|AFzzz1文章介绍近年来,基于Transformer和CNN的视觉基础模型取得巨大成功。有许多研究进一步地将Transformer结构与CNN架构结合,设计出了更为高效的hybridCNN-TransformerNetwork,但它们的精度仍然不尽如意。本文介绍了一种新的基础模型SMT(Scale-AwareModulationTransformer......
  • transformer模型训练、推理过程分析
    复杂度分析推理过程图示DoubleQLORA示意图......
  • from_rnn_2_transformer-cnblog
    从RNN到Transformer各式各样的“attention”不管是在CV领域还是NLP领域,attention实质上就是一种取权重求和的过程。使得网络focus在其应该focus的地方。根据Attention的计算区域,可以分成以下几种:1)SoftAttention,这是比较常见的Attention方式,对所有key求权重概率,每个key都有一......
  • 【NIPS2021】Twins: Revisiting the Design of Spatial Attention in Vision Transfor
    来自美团技术团队♪(^∀^●)ノシ论文地址:https://arxiv.org/abs/2104.13840代码地址:https://git.io/Twins一、写在前面 本文提出了两种视觉转换器架构,即Twins-PCPVT和Twins-SVT。Twins-PCPVT将金字塔Transformer模型PVT [2] 中的固定位置编码(PositionalEncoding)更改为团队......
  • 听我说,Transformer它就是个支持向量机
    Transformer是一个支持向量机(SVM)一种新型理论在学界引发了人们的讨论。上周末,一篇来自宾夕法尼亚大学、加州大学河滨分校的论文试图研究大模型基础Transformer结构的原理,其在注意力层的优化几何与将最优输入token与非最优token分开的硬边界SVM问题之间建立了形式等价。在......
  • 矩阵成真!Pytorch最新工具mm,3D可视化矩阵乘法、Transformer注意力
    前言 Pytorch团队推出的最新3D可视化最新工具mm,能够将矩阵乘法模拟世界还原。本文转载自新智元仅用于学术分享,若侵权请联系删除欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。CV各大方向专栏与各个部署框架最全教程整理【C......
  • 手动实现Transformer
      Transformer和BERT可谓是LLM的基础模型,彻底搞懂极其必要。Transformer最初设想是作为文本翻译模型使用的,而BERT模型构建使用了Transformer的部分组件,如果理解了Transformer,则能很轻松地理解BERT。一.Transformer模型架构1.编码器(1)Multi-HeadAttention(多头注意力机制)  ......
  • 详细了解Transformer:Attention Is All You Need
    原文链接:AttentionIsAllYouNeed1.背景在机器翻译任务下,RNN、LSTM、GRU等序列模型在NLP中取得了巨大的成功,但是这些模型的训练是通常沿着输入和输出序列的符号位置进行计算的顺序计算,无法并行。文中提出了名为Transformer的模型架构,完全依赖注意力机制(AttentionMechanis......
  • 大模型增量训练--基于transformer制作一个大模型聊天机器人
    ChatGPTBook/UniLMProj 代码地址FoldersandfilesNameLastcommitmessageLastcommitdateparentdirectory..data(Directory)updatecode3monthsagoimages(Directory)updatecode3monthsagokuaku......