题外话
Radiant 真的是好好听!
正文
推一个弱智式子。
\[\bigotimes_{i=1}^n\gcd(i,n) \](\(\bigotimes\) 是异或和)
\[\bigotimes\limits_{i=1}^n\sum\limits_{d=1}^nd[\gcd(i,n)=d] \]\[\bigotimes\limits_{d|n}d\bigotimes\limits_{i=1}^n[\gcd(i,n)=d] \]\[\bigotimes\limits_{d|n}d\bigotimes\limits_{i=1}^{\frac{n}{d}}[\gcd(i,\frac{n}{d})=1] \]\[\bigotimes\limits_{d|n}d[\varphi(\frac{n}{d})\nmid2] \]显然,\(\varphi(n)\) 只有在小于等于 \(2\) 的情况下为奇数。所以答案就是:
\[n\otimes (\frac{n}{2}[n|2]) \] 标签:frac,gcd,limits,闲话,varphi,bigotimes,开始,这件 From: https://www.cnblogs.com/wdgm4/p/17749182.html