连续产量古诺模型
连续产量古诺模型是博弈论中非常经典的模型,以两厂商连续产量古诺博弈为例:
1、模型建立
Player:两个供应相同产品的厂商
产量:厂商1的产量为q1,厂商2的产量为q2,市场总供给为Q=q1+q2。
市场出清价格P:市场总供给的函数P(Q)=8-Q (市场出清价格是可以将产品全部卖出的价格)
成本:设两个厂商都无固定成本,每增加一单位产量的边际成本c1=c2=c。
最后强调两个厂商同时决策,即决策之前都不知道另一方产量(完全信息静态博弈)。
该博弈两博弈方的策略空间是他们可以选择的产量。假设产量是连续变量,也就是说两厂商有无限多种可选策略。两博弈方的得益是两个厂商各自的利润,即各自的销售收益减去各自的成本:
和
其中,、分别是厂商1、厂商2的利润。可以看出,两博弈方的得益都取决于双方的产量。这个博弈中,我们需要找到纳什均衡,即只要策略组合满足和相互是对于对方的最佳对策就构成纳什均衡。
根据纳什均衡的定义知道,纳什均衡就是相互是最优对策的各博弈方策略组合。因此,如果策略组合是本博弈的纳什均衡,就必须是下列最大值问题的解:
2、模型求解
上述两个求最大值的式子都是各自变量的二次式,且二次项系数都小于0,因此只要和能使两式各自对和的导数为0就能实现两式的最大值。
即令
又因为策略组合是本博弈的纳什均衡,故解下列方程
得到方程组唯一解:
可以进一步得到市场总供给
市场出清价格为
故双方的得益分别为:
总收益为(s为separate):
为两个厂商在各自做决策场景下的总收益。
3、模型拓展
如果从两个厂商总体利益最大化角度进行统一的产量选择,就要求实现两个厂商总和利润最大的总产量。设总产量为Q,则总利润为
其中(o为overall)为两个厂商总体决策时的总利润,则同样求一阶导得到当时,取得最大值
4、结果比较
将两个厂商进行统一的产量选择时的结果与两个厂商独立决策、追求各自利润最大化时的博弈结果相比:
不难发现,从两个厂商总体利益最大化角度进行统一的产量选择时,总产量较小,而总利润却较高。
因此从两个厂商的总体来看,根据总体利益最大化决策效率更高,即如果两个厂商联合起来决定产量,先定出使总利益最大的总产量()后各自生产其一半(),则各自可分享到单位利润,比各自独立决策获得的利润要高。
当然,在两个独立决策的企业之间实现合作并不容易。合作难以实现的原因主要是合作的产量组合(,)不是纳什均衡。在这个策略组合中,双方都可以独自改变自己的策略得到更高的利润,双方都有突破单位产量的冲动。在缺乏有强制性协议保障的情况下,这种冲动注定了不可能维持产量组合(,),两个厂商早晚都会增产,只有达到纳什均衡产量(,)后才会稳定下来,因为这时任意一个厂商单独改变产量都不利于自己。如果将遵守还是突破限额作为厂商面临的选择,则构成如下图所示中得益矩阵表示的博弈。不难看出,下图所示是一个囚徒困境。
5、总结
上述博弈是根据谢识予老师的《经济博弈论》中连续产量古诺模型改编得到的比较简单版本。更复杂的模型可以包括n个寡头,市场出清价格与市场总产量的函数关系P=P(Q) 可以更复杂,每个厂商的成本也可以变化或不同。但不管这些因素如何变化,分析思路与上述模型是相似的,不过纳什均衡的产量组合将变成n个偏微分为0的联立方程组解。
产量博弈的古诺模型是一种囚徒困境,无法实现博弈方总体和各个博弈方各自最大利益的结论,该博弈说明自由竞争经济同样存在低效率问题,放任自流并非最好的政策。这些结论也说明了,政府对市场调控和监管的必要性。