首页 > 其他分享 >Sensor Network

Sensor Network

时间:2023-09-17 21:57:57浏览次数:40  
标签:le Network int Sensor Amazon Samantha sensors sensor

题目描述

A wireless sensor network consists of autonomous sensors scattered in an environment where they monitor conditions such as temperature, sound, and pressure.

Samantha is a researcher working on the Amazon Carbon-dioxide Measurement (ACM) project. In this project, a wireless sensor network in the Amazon rainforest gathers environmental information. The Amazon rainforest stores an amount of carbon equivalent to a decade of global fossil fuel emissions, and it plays a crucial role in the world’s oxygen-transfer processes. Because of the huge size of this forest, changes in the forest affect not only the local environment but also global climate by altering wind and ocean current patterns. The goal of the ACM project is to help scientists better understand earth’s complex ecosystems and the impact of human activities.

Samantha has an important hypothesis and to test her hypothesis, she needs to find a subset of sensors in which each pair of sensors can communicate directly with each other. A sensor can communicate directly with any other sensor having distance at most \(d\) from it. In order for her experiments to be as accurate as possible, Samantha wants to choose as many sensors as possible.

As one does not simply walk into the Amazon, Samantha cannot add new sensors or move those that are currently in place. So given the current locations of the sensors, she needs your help to find the largest subset satisfying her criteria. For simplicity, represent the location of each sensor as a point in a two-dimensional plane with the distance between two points being the usual Euclidean distance.

输入格式

The input consists of a single test case. The first line contains two integers \(n\) and \(d\) (\(1 \le n \le 100\) and \(1 \le d \le 10\, 000\)), where \(n\) is the number of sensors available and \(d\) is the maximum distance between sensors that can communicate directly. Sensors are numbered \(1\) to \(n\). Each of the next \(n\) lines contains two integers \(x\) and \(y\) (\(-10\, 000\le x, y \le 10\, 000\)) indicating the sensor coordinates, starting with the first sensor.

求最大独立集,首先可以用爆搜/随机化(模拟退火)

然后来看正常解法。

直接做是很难做的,考虑枚举两个最远点。然后就有了这样一幅图。

只有不规则图形 ADB 和 ABC 中的点可能被选上。

然后 用初中数学 分析一下发现,如果将所有大于 \(d\) 的可选点连边,是一个二分图。因为只有在直线两边的点会连起来。

然后就是求二分图最大独立集的问题了。

理论复杂度 \(O(n^{4.5})\),理论上还可以除以 \(\omega\),但是本身常数就很小所以不用。

#include<bits/stdc++.h>
using namespace std;
const int N=105;
int n,d,vs[N],v[N][N],c,st[N],p[N],l,r,q[N],mx,k,mm[N],f[N][N];
struct node{
	int x,y;
}t[N];
int dis(node x,node y)
{
	return (x.x-y.x)*(x.x-y.x)+(x.y-y.y)*(x.y-y.y);
}
void dfs(int x,int y)
{
	if(!~vs[x])
	{
		vs[x]=y;
		for(int i=1;i<=n;i++)
			if(v[x][i])
				dfs(i,y^1);
	}
}
int bfs()
{
	memset(p,0,sizeof(p));
	memset(mm,0,sizeof(mm));
	p[q[l=r=1]=0]=1;
	while(l<=r)
	{
		for(int i=0;i<=n+1;i++)
			if(!p[i]&&v[q[l]][i])
				p[q[++r]=i]=p[q[l]]+1;
		++l;
	}
	return p[n+1];
}
int sou(int x)
{
	if(x==n+1)
		return 1;
	for(int&i=mm[x];i<=n+1;i++)
	{
		if(v[x][i]&&p[i]==p[x]+1&&sou(i))
		{
			v[x][i]=0,v[i][x]=1;
			return 1;
		}
	}
	return 0;
}
int main()
{
	scanf("%d%d",&n,&d);
	for(int i=1;i<=n;i++)
		scanf("%d%d",&t[i].x,&t[i].y);
	st[mx=1]=1;
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<i;j++)
		{
			memset(v,0,sizeof(v));
			memset(vs,-1,sizeof(vs));
			int k=dis(t[i],t[j]);
			c=0;
			if(k>d*d)
				continue;
			for(int a=1;a<=n;a++)
			{
				if(dis(t[i],t[a])>k||dis(t[j],t[a])>k)
					continue;
				for(int b=1;b<=n;b++)
					if(dis(t[b],t[j])<=k&&dis(t[b],t[i])<=k&&dis(t[a],t[b])>k&&a^b)
						v[a][b]=1;
			}
			for(int a=1;a<=n;a++)
				if(dis(t[i],t[a])<=k&&dis(t[j],t[a])<=k&&!~vs[a])
					dfs(a,0);
			for(int a=1;a<=n;a++)
			{
				if(vs[a]==0)
					v[0][a]=1,++c;
				else if(vs[a]==1)
				{
					for(int b=1;b<=n;b++)
						v[a][b]=0;
					v[a][n+1]=1,++c;
				}
			}
			memcpy(f,v,sizeof(f));
			int g=0,ans=0,tp=0;
			while(bfs())
				while(g=sou(0))
					ans+=g;
			if(c-ans>mx)
			{
				mx=c-ans;
				for(int a=1;a<=n;a++)
					if(vs[a]==0&&p[a]||vs[a]==1&&!p[a])
						st[++tp]=a;
			}
		}
	}
	printf("%d\n",mx);
	for(int i=1;i<=mx;i++)
		printf("%d ",st[i]);
}

标签:le,Network,int,Sensor,Amazon,Samantha,sensors,sensor
From: https://www.cnblogs.com/mekoszc/p/17709901.html

相关文章

  • Layered Network stack
    3.LayeredNetworkstackModularityDoesnotspecifyanimplementationInstead,tellsushowtoorganizefunctionalityEncapsulationInterfacesdefinecross-layerinteractionLayersonlyrelyonthosebelowthemFlexibilityReuseofcodeacrossth......
  • 第15节课:AI框架图片识别之数据解析、Network初始化、Sigmoid激活函数及Feedforward函
    第15节课:AI框架图片识别之数据解析、Network初始化、Sigmoid激活函数及Feedforward函数详细内容请关注微信公众号:从零起步学习人工智能 https://mp.weixin.qq.com/s?__biz=MzU3OTc4OTEzNw==&mid=2247483658&idx=1&sn=3d8b40ce71e84c717428d4a1994581e0&chksm=fd618934ca1600229308......
  • VDSR-Accurate Image Super-Resolution Using Very Deep Convolutional Networks阅读
    AccurateImageSuper-ResolutionUsingVeryDeepConvolutionalNetworks(VDSR)阅读笔记(22.10.07)使用深度卷积网络的精确图像超分辨率摘要:使用一个非常深的卷积神经网络,灵感来源于VGG-Net。本文发现,网络深度增加可以显著提高准确性。本文模型最终使用了20个权重层。通过在深度网......
  • VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE
    (VGG)VERYDEEPCONVOLUTIONALNETWORKSFORLARGE-SCALEIMAGERECOGNITION阅读笔记(22.10.05)摘要:本文研究在大规模图像识别设置中卷积网络深度对其准确性的影响。主要贡献是对使用(3,3)卷积核的体系结构增加深度的网络进行全面评估,结果表明,深度推到16-19可以实现对现有技术配置的显......
  • web DevOps / qemu / kvm nat / kvm network / danei network
    s[root@eulershare]#rpm-qa|grepopenssh#查看sshopenssh-8.8p1-21.oe2203sp2.x86_64openssh-server-8.8p1-21.oe2203sp2.x86_64openssh-clients-8.8p1-21.oe2203sp2.x86_64openssh-askpass-8.8p1-21.oe2203sp2.x86_64[root@eulershare]#pgrep-l......
  • iOS YTKNetworking网络框架增加text/plain支持
    网络请求有时候报错"Requestfailed:unacceptablecontent-type:text/plain"解决办法:在基类初始化时新增以下方法即可-(void)converContentTypeConfig{YTKNetworkAgent*agent=[YTKNetworkAgentsharedAgent];NSSet*acceptableContentTypes=[NSSetsetWithOb......
  • static nat(network address translate)
    核心1、出接口配置natstatic转换,命令如下interfaceGigabitEthernet0/0/1ipaddress20.1.1.1255.255.255.0 natstaticglobal20.1.1.3inside10.1.1.2netmask255.255.255.255natstaticglobal20.1.1.4inside10.1.1.3netmask255.255.255.255注意:此种转换方式......
  • #yyds干货盘点#Linux系统sensors命令 – 检测服务器硬件信息
    sensors命令用于检测服务器硬件信息,例如CPU电压与温度、主板、风扇转速等数据。语法格式 :sensors参考实例检查当前CPU处理器得电压和温度信息[root@linuxcool~]#sensorscoretemp-isa-0000Core0:+48.0°C(high=+87.0°C,crit=+97.0°C)Core1:+46.0......
  • Spikformer: When Spiking Neural Network Meets Transformer
    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布!PublishedasaconferencepaperatICLR2023(同大组工作) ABSTRACT我们考虑了两种生物学合理的结构,脉冲神经网络(SNN)和自注意机制。前者为深度学习提供了一种节能且事件驱动的范式,而后者则能够捕获特征依赖性,使Trans......
  • Proj CDeepFuzz Paper Reading: DeepTest: automated testing of deep-neural-network
    Abstract本文:DeepTestTask:asystematictestingtoolforDNN-drivenvehiclesMethod:generatedtestcaseswithreal-worldchangeslikerain,fog,lightingconditions,etc.maxthenumberofactivatedneuronsGithub:https://github.com/ARiSE-Lab/deepTes......