首页 > 其他分享 >Proj CDeepFuzz Paper Reading: DeepTest: automated testing of deep-neural-network-driven autonomous c

Proj CDeepFuzz Paper Reading: DeepTest: automated testing of deep-neural-network-driven autonomous c

时间:2023-09-04 20:23:24浏览次数:67  
标签:network neural testing deep driven Proj CDeepFuzz DeepTest

Abstract

本文: DeepTest
Task: a systematic testing tool for DNN-driven vehicles
Method:

  1. generated test cases with real-world changes like rain, fog, lighting conditions, etc.
  2. max the number of activated neurons

Github: https://github.com/ARiSE-Lab/deepTest
实验:
dataset: Udacity self-driving car challenge(Rambo, Chauffeur, Epoch)
效果:

  1. found thousands of erroneous behaviors under different realistic driving conditions

标签:network,neural,testing,deep,driven,Proj,CDeepFuzz,DeepTest
From: https://www.cnblogs.com/xuesu/p/17677970.html

相关文章

  • Proj CDeepFuzz Paper Reading: DeepGauge: multi-granularity testing criteria for
    Abstract本文:DeepGaugeTask:providemulti-granularitytestingcriteriaforDLsystemsMethod:multi-granularitytestingcriteriaforDLsystems:1.k-multisectionNeuronCoverage2.NeuronBoundaryCoverage3.StrongNeuronActivationCoverage4.Top-kN......
  • Position-Enhanced and Time-aware Graph Convolutional Network for Sequential Reco
    Position-EnhancedandTime-awareGraphConvolutionalNetworkforSequentialRecommendations目录Position-EnhancedandTime-awareGraphConvolutionalNetworkforSequentialRecommendations概符号说明PTGCNEmbeddingLayerConvolutionalLayer代码[HuangL.,MaY.,......
  • networkX-01-基础
    创建一个图Graph是由一组节点和节点对(边)组成的。#创建一个没有节点和边的空图。importnetworkxasnxG=nx.Graph()01节点图G可由多种方式生成。NetWorkX中包含许多图形生成函数(graphgeneratorfunctions),用于读取和写入多种格式的图形。方式1:一次添加一个节点G.......
  • Proj CDeepFuzz Paper Reading: Aries: Efficient Testing of Deep Neural Networks v
    Abstract背景:thedefactostandardtoassessthequalityofDNNsintheindustryistochecktheirperformance(accuracy)onacollectedsetoflabeledtestdatatestselectioncansavelaborandthenbeusedtoassessthemodel前提:themodelshouldhav......
  • Proj CDeepFuzz Paper Reading: Deepxplore: Automated whitebox testing of deep lea
    Abstract背景:现有的深度学习测试在很⼤程度上依赖于⼿动标记的数据,因此通常⽆法暴露罕⻅输⼊的错误⾏为。本文:DeepXploreTask:awhite-boxframeworktotestDLModels方法:neuroncoveragedifferentialtestingwithmultipleDLsystems(models)joint-optimizationpro......
  • 论文阅读 《Pingmesh: A Large-Scale System for Data Center Network Latency Measur
    背景在我们内部产品中,一直有关于网络性能数据监控需求,我们之前是直接使用ping命令收集结果,每台服务器去ping(N-1)台,也就是N^2的复杂度,稳定性和性能都存在一些问题,最近打算对这部分进行重写,在重新调研期间看到了Pingmesh这篇论文,Pingmesh是微软用来监控数据中心网络情况......
  • 解决:docker 443: connect: network is unreachable
    1、配置镜像加速器您可以通过修改daemon配置文件/etc/docker/daemon.json来使用加速器sudomkdir-p/etc/dockersudotee/etc/docker/daemon.json<<-'EOF'{"registry-mirrors":["https://liadaibh.mirror.aliyuncs.com"]}EOFsudosystemctldaemon-......
  • Debian testing更新遇到依赖错误
    gnustep-base-runtime:Depends:gnustep-base-common(=1.29.0-6)but1.28.1+really1.28.0-5istobeinstalledBing答案Clearoutthelocalrepositoryofretrievedpackagefiles.sudoapt-getautocleanResolvedependenciesproblemssudoapt-get-finstalls......
  • 学习笔记:DSTAGNN: Dynamic Spatial-Temporal Aware Graph Neural Network for Traffic
    DSTAGNN:DynamicSpatial-TemporalAwareGraphNeuralNetworkforTrafficFlowForecastingICML2022论文地址:https://proceedings.mlr.press/v162/lan22a.html代码地址:https://github.com/SYLan2019/DSTAGNN一个用于时空序列预测的交通流量预测模型。可学习的地方:提出......
  • [KDD 2023] All in One- Multi-Task Prompting for Graph Neural Networks
    [KDD2023]AllinOne-Multi-TaskPromptingforGraphNeuralNetworks总结提出了个多任务prompt学习框架,扩展GNN的泛化能力:统一了NLP和图学习领域的prompt格式,包括prompttoken、tokenstructure、insertingpattern构建诱导子图,将点级和边级任务改造为图级任务,统一不同......