首页 > 其他分享 >基于开源模型搭建实时人脸识别系统(二):人脸检测概览与模型选型

基于开源模型搭建实时人脸识别系统(二):人脸检测概览与模型选型

时间:2023-09-13 21:44:21浏览次数:48  
标签:人脸识别 max 模型 概览 bboxes np input model self

基于开源模型的实时人脸识别系统
进行人脸识别首要的任务就是要定位出画面中的人脸,这个任务就是人脸检测。人脸检测总体上算是目标检测的一个特殊情况,但也有自身的特点,比如角度多变,表情多变,可能存在各类遮挡。早期传统的方法有Haar Cascade、HOG等,基本做法就是特征描述子+滑窗+分类器,随着2012年Alexnet的出现,慢慢深度学习在这一领域开始崛起。算法和硬件性能的发展,也让基于深度学习的人脸识别不仅性能取得了很大的提升,速度也能达到实时,使得人脸技术真正进入了实用。
image.png
人脸检测大体上跟随目标检测技术的发展,不过也有些自己的方法,主要可以分为一下几类方法.
image.png

人脸检测算法概览

由于这个系列重点并不在于算法细节本身,因而对于一些算法只是提及,有兴趣可以自己精读。

Cascade-CNN Based Models

这类方法通过级联几个网络来逐步提高准确率,比较有代表性的是MTCNN方法。
image.png
MTCNN通过级联PNet, RNet, ONet,层层过滤来提高整个检测的精度。这个方法更适合CPU,那个时期的嵌入式设备使用比较多。 由于有3个网络,训练起来比较麻烦。

R-CNN

这一块主要来源于目标检测中的RCNN, Fast RCNN, Faster RCNN
image.png

这类方法精度高,但速度相对较慢。

Single Shot Detection Models

SSD是目标检测领域比较有代表性的一个算法,与RCNN系列相比,它是one stage方法,速度比较快。基于它的用于人脸检测的代表性方法是SSH.

Feature Pyramid Network Based Models

image.png

YOLO系列

YOLO系列在目标检测领域比较成功,自然的也会用在人脸检测领域,比如tiny yolo face,yolov5face, yolov8face等,基本上每一代都会应用于人脸。

开源模型的选型

为了能够达到实时,同时也要有较好的效果,我们将目光锁定在yolo系列上,yolo在精度和速度的平衡上做的比较好,也比较易用。目前最新的是yolov8, 经过搜索,也已经有人将其用在人脸检测上了:derronqi/yolov8-face: yolov8 face detection with landmark (github.com)
image.png

推理框架的选择

简单起见,我们选择onnxruntime,该框架既支持CPU也支持GPU, 基本满足了我们的开发要求。

yolov8-face的使用

为了减少重复工作,我们可以定义一个模型的基类, 对模型载入、推理的操作进行封装,这样就不需要每个模型都实现一遍了:

from easydict import EasyDict as edict
import onnxruntime
import threading

class BaseModel:
    def __init__(self, model_path, device='cpu', **kwargs) -> None:
        self.model = self.load_model(model_path, device)
        self.input_layer = self.model.get_inputs()[0].name
        self.output_layers = [output.name for output in self.model.get_outputs()]
        self.lock = threading.Lock()

    def load_model(self, model_path:str, device:str='cpu'):
        available_providers = onnxruntime.get_available_providers()
        if device == "gpu" and "CUDAExecutionProvider" not in available_providers:
            print("CUDAExecutionProvider is not available, use CPUExecutionProvider instead")
            device = "cpu"

        if device == 'cpu':
            self.model = onnxruntime.InferenceSession(model_path, providers=['CPUExecutionProvider'])
        else:
            self.model = onnxruntime.InferenceSession(model_path,providers=['CUDAExecutionProvider'])
            
        return self.model
        
    def inference(self, input):
        with self.lock:
            outputs = self.model.run(self.output_layers, {self.input_layer: input})
        return outputs
        
    def preprocess(self, **kwargs):
        pass

    def postprocess(self, **kwargs):
        pass

    def run(self, **kwargs):
        pass

继承BaseModel, 实现模型的前处理和后处理:

class Yolov8Face(BaseModel):
    def __init__(self, model_path, device='cpu',**kwargs) -> None:
        super().__init__(model_path, device, **kwargs)
        self.conf_threshold = kwargs.get('conf_threshold', 0.5)
        self.iou_threshold = kwargs.get('iou_threshold', 0.4)
        self.input_size = kwargs.get('input_size', 640)
        self.input_width, self.input_height = self.input_size, self.input_size
        self.reg_max=16
        self.project = np.arange(self.reg_max)
        self.strides=[8, 16, 32]

        self.feats_hw = [(math.ceil(self.input_height / self.strides[i]), math.ceil(self.input_width / self.strides[i])) for i in range(len(self.strides))]
        self.anchors = self.make_anchors(self.feats_hw)

    def make_anchors(self, feats_hw, grid_cell_offset=0.5):
        """Generate anchors from features."""
        anchor_points = {}
        for i, stride in enumerate(self.strides):
            h,w = feats_hw[i]
            x = np.arange(0, w) + grid_cell_offset  # shift x
            y = np.arange(0, h) + grid_cell_offset  # shift y
            sx, sy = np.meshgrid(x, y)
            # sy, sx = np.meshgrid(y, x)
            anchor_points[stride] = np.stack((sx, sy), axis=-1).reshape(-1, 2)
        return anchor_points
    
    def preprocess(self, image, **kwargs):
        return resize_image(image, keep_ratio=True, dst_width=self.input_width, dst_height=self.input_height)
    
    def distance2bbox(self, points, distance, max_shape=None):
        x1 = points[:, 0] - distance[:, 0]
        y1 = points[:, 1] - distance[:, 1]
        x2 = points[:, 0] + distance[:, 2]
        y2 = points[:, 1] + distance[:, 3]
        if max_shape is not None:
            x1 = np.clip(x1, 0, max_shape[1])
            y1 = np.clip(y1, 0, max_shape[0])
            x2 = np.clip(x2, 0, max_shape[1])
            y2 = np.clip(y2, 0, max_shape[0])
        return np.stack([x1, y1, x2, y2], axis=-1)

    def postprocess(self, preds, scale_h, scale_w, top, left, **kwargs):
        bboxes, scores, landmarks = [], [], []
        for i, pred in enumerate(preds):
            stride = int(self.input_height/pred.shape[2])
            pred = pred.transpose((0, 2, 3, 1))
            
            box = pred[..., :self.reg_max * 4]
            cls = 1 / (1 + np.exp(-pred[..., self.reg_max * 4:-15])).reshape((-1,1))
            kpts = pred[..., -15:].reshape((-1,15)) ### x1,y1,score1, ..., x5,y5,score5

            # tmp = box.reshape(self.feats_hw[i][0], self.feats_hw[i][1], 4, self.reg_max)
            tmp = box.reshape(-1, 4, self.reg_max)
            bbox_pred = softmax(tmp, axis=-1)
            bbox_pred = np.dot(bbox_pred, self.project).reshape((-1,4))

            bbox = self.distance2bbox(self.anchors[stride], bbox_pred, max_shape=(self.input_height, self.input_width)) * stride
            kpts[:, 0::3] = (kpts[:, 0::3] * 2.0 + (self.anchors[stride][:, 0].reshape((-1,1)) - 0.5)) * stride
            kpts[:, 1::3] = (kpts[:, 1::3] * 2.0 + (self.anchors[stride][:, 1].reshape((-1,1)) - 0.5)) * stride
            kpts[:, 2::3] = 1 / (1+np.exp(-kpts[:, 2::3]))

            bbox -= np.array([[left, top, left, top]])  ###合理使用广播法则
            bbox *= np.array([[scale_w, scale_h, scale_w, scale_h]])
            kpts -= np.tile(np.array([left, top, 0]), 5).reshape((1,15))
            kpts *= np.tile(np.array([scale_w, scale_h, 1]), 5).reshape((1,15))

            bboxes.append(bbox)
            scores.append(cls)
            landmarks.append(kpts)

        bboxes = np.concatenate(bboxes, axis=0)
        scores = np.concatenate(scores, axis=0)
        landmarks = np.concatenate(landmarks, axis=0)
    
        bboxes_wh = bboxes.copy()
        bboxes_wh[:, 2:4] = bboxes[:, 2:4] - bboxes[:, 0:2]  ####xywh
        classIds = np.argmax(scores, axis=1)
        confidences = np.max(scores, axis=1)  ####max_class_confidence
        
        mask = confidences>self.conf_threshold
        bboxes_wh = bboxes_wh[mask]  ###合理使用广播法则
        confidences = confidences[mask]
        classIds = classIds[mask]
        landmarks = landmarks[mask]

        if len(bboxes_wh) == 0:
            return np.empty((0, 5)), np.empty((0, 5))
        
        indices = cv2.dnn.NMSBoxes(bboxes_wh.tolist(), confidences.tolist(), self.conf_threshold,
                                   self.iou_threshold).flatten()
        if len(indices) > 0:
            mlvl_bboxes = bboxes_wh[indices]
            confidences = confidences[indices]
            classIds = classIds[indices]
            ## convert box to x1,y1,x2,y2
            mlvl_bboxes[:, 2:4] = mlvl_bboxes[:, 2:4] + mlvl_bboxes[:, 0:2]

            # concat box, confidence, classId
            mlvl_bboxes = np.concatenate((mlvl_bboxes, confidences.reshape(-1, 1), classIds.reshape(-1, 1)), axis=1)
            
            landmarks = landmarks[indices]
            return mlvl_bboxes, landmarks.reshape(-1, 5, 3)[..., :2]
        else:
            return np.empty((0, 5)), np.empty((0, 5))

    
    def run(self, image, **kwargs):
        img, newh, neww, top, left = self.preprocess(image)
        scale_h, scale_w = image.shape[0]/newh, image.shape[1]/neww
        # convert to RGB
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = img.astype(np.float32)
        img = img / 255.0
        img = np.transpose(img, (2, 0, 1))
        img = np.expand_dims(img, axis=0)
        output = self.inference(img)
        bboxes, landmarks = self.postprocess(output, scale_h, scale_w, top, left)
        # limit box in image
        bboxes[:, 0] = np.clip(bboxes[:, 0], 0, image.shape[1])
        bboxes[:, 1] = np.clip(bboxes[:, 1], 0, image.shape[0])
        
        return bboxes, landmarks

测试

在Intel(R) Core(TM) i5-10210U上,yolov8-lite-t耗时50ms, 基本可以达到实时的需求。
image.png

参考文献:
ZOU, Zhengxia, et al. Object detection in 20 years: A survey. Proceedings of the IEEE, 2023.
MINAEE, Shervin, et al. Going deeper into face detection: A survey. arXiv preprint arXiv:2103.14983, 2021.

人脸识别系统源码

https://mbd.pub/o/bread/ZJyTmZty

标签:人脸识别,max,模型,概览,bboxes,np,input,model,self
From: https://www.cnblogs.com/haoliuhust/p/17700867.html

相关文章

  • 演讲实录:大模型时代,我们需要什么样的AI算力系统?
    当前,“百模大战”带来了算力需求的爆发,AI芯片产业也迎来巨大机遇,“创新架构+开源生态”正在激发多元AI算力产品百花齐放。面对新的产业机会,AI算力产业链亟需通过上下游协作共同把握机遇。近日,浪潮信息AI&HPC产品线高级产品经理StephenZhang在开放计算中国峰会就AIGC时代的算力需求......
  • 【lssvm回归预测】基于变模态结合秃鹰算法优化最小二乘支持向量机VMD-BES-LSSVM实现数
    ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。......
  • 1.游戏模型制作标准
    一.max的基础操作1.试图区 顶视图 T 前视图 F 这三个都是辅助视图(尽量不要做旋转操作) 左视图 L 透视图 P 操作视图''' 视图最大化 alt+w 模型居中显示 Z 边框显示 J 取消网格显示 G 大师模式 ctrl+x'''2.显示模式线框和实体之间的切换 F3实体 + 线......
  • 做一个3dsmax的工具:复杂模型的显示方式
    功能包含:   总统计,用于分析1,选择模型一键转成VR代理\CR代理,  2, 面数>x,面数前几的物体显示切换  3,一键显示切换   4,探取用户的汉化属性情况,5,进行汉化信息。等等对操作大场景的设计师非常实用,我这个插件我也......
  • Java多线程____生产者与消费者模型
    1.仓库类__:入库和出库的集合 有生产和出货方法packagecom.test.thread;importjava.util.LinkedList;/***@authorAdministrator*仓库类*/publicclassStorage{ //存储集合 privateLinkedList<Object>list=newLinkedList<Object>(); publicvoidruk......
  • 阿里云PAI-灵骏大模型训练工具Pai-Megatron-Patch正式开源!
    作者:李鹏,王明,施晨,黄俊导读随着深度学习大语言模型的不断发展,其模型结构和量级在快速演化,依托大模型技术的应用更是层出不穷。对于广大开发者来说不仅要考虑如何在复杂多变的场景下有效的将大模型消耗的算力发挥出来,还要应对大模型的持续迭代。开发简单易用的大模型训练工具就成了......
  • 领域驱动模型DDD(四)——Eventuate Tram Saga源码讲解
    前言虽然本人一直抱怨《微服务架构设计模式》中DDD模式下采用的EventuateTramSaga不算简单易用,但是为了更加深入了解原文作者的设计思路,还是花了点时间去阅读源码,并且为了自己日后自己返回来看的懂,就斗胆地对整个EventuateTramSaga从注册到执行的代码运行流程进行注释解读下,......
  • RocketMQ教程-(4)-领域模型-消费者(Consumer)
    本文介绍ApacheRocketMQ中消费者(Consumer)的定义、模型关系、内部属性、行为约束、版本兼容性及使用建议。定义消费者是ApacheRocketMQ中用来接收并处理消息的运行实体。消费者通常被集成在业务系统中,从ApacheRocketMQ服务端获取消息,并将消息转化成业务可理解的信息,供业务......
  • RocketMQ教程-(4)-领域模型概述
    ApacheRocketMQ是一款典型的分布式架构下的中间件产品,使用异步通信方式和发布订阅的消息传输模型。通信方式和传输模型的具体说明,请参见下文通信方式介绍和消息传输模型介绍。ApacheRocketMQ产品具备异步通信的优势,系统拓扑简单、上下游耦合较弱,主要应用于异步解耦,流量削峰填......
  • RocketMQ教程-(4)-领域模型-消费者分组ConsumerGroup
    定义消费者分组是ApacheRocketMQ系统中承载多个消费行为一致的消费者的负载均衡分组。和消费者不同,消费者分组并不是运行实体,而是一个逻辑资源。在ApacheRocketMQ中,通过消费者分组内初始化多个消费者实现消费性能的水平扩展以及高可用容灾。在消费者分组中,统一定义以下消费行......