首页 > 其他分享 >一套框架解决「背包问题」

一套框架解决「背包问题」

时间:2023-09-12 11:35:32浏览次数:38  
标签:背包 target 框架 nums int num 一套 dp

动态规划

背包问题

背包问题是一类经典的动态规划问题,它非常灵活,需要仔细琢磨体会,本文先对背包问题的几种常见类型作一个总结,期望可以用一套框架解决背包问题。 常见背包问题可分为:

  • 01 背包问题:
    最基本的背包问题就是 01 背包问题:一共有 N 件物品,第 i(i 从 1 开始)件物品的重量为 w[i],价值为 v[i]。在总重量不超过背包承载上限 W 的情况下,能够装入背包的最大价值是多少?

  • 完全背包问题:
    完全背包与 01 背包不同就是每种物品可以有无限多个:一共有 N 种物品,每种物品有无限多个,第 i(i 从 1 开始)种物品的重量为 w[i],价值为 v[i]。在总重量不超过背包承载上限 W 的情况下,能够装入背包的最大价值是多少? 可见 01 背包问题与完全背包问题主要区别就是物品是否可以重复选取。

背包问题具备的特征:

是否可以根据一个 target(直接给出或间接求出),target 可以是数字也可以是字符串,再给定一个数组 arrs,问:能否使用 arrs 中的元素做各种排列组合得到 target。

背包问题解法:

  • 01 背包问题:
    如果是 01 背包,即数组中的元素不可重复使用,外循环遍历 arrs,内循环遍历 target,且内循环倒序:

完全背包问题:
(1)如果是完全背包,即数组中的元素可重复使用并且不考虑元素之间顺序,arrs 放在外循环(保证 arrs 按顺序),target在内循环。且内循环正序。 (2)如果组合问题需考虑元素之间的顺序,需将 target 放在外循环,将 arrs 放在内循环,且内循环正序。

  • 例题:
    01 背包问题
  1. 分割等和子集

本题要求把数组分成两个等和的子集,相当于找到一个子集,其和为 sum / 2,这个 sum / 2 就是 target(target 间接给出)。 于是转化为是否可以用 nums 中的数组合和成 target,01 背包问题,外层循环为选择池 num: nums,内层循环为 target。

dp[i] 表示是否存在和为 i 的 num 组合。

外层遍历 nums 每个 num;
内层遍历 target(由大到小)。
对于元素之和等于 i - num 的每一种组合,在最后添加 num 之后即可得到一个元素之和等于 i 的组合,因此dp[i] 依赖于 dp[i - num],并且在计算 dp[i - num] 时,要保证索引较小的元素值不被覆盖,需要后向更新 dp[i],并且当 i - num < i 时, dp[i] 已经更新过,于是: dp[i] = dp[i] || dp[i - num] 对于特例:如果 sum 为奇数,那一定找不到符合要求的子集,返回 False。 对于边界条件,我们定义 dp[0] = true 表示当 i - num = 0,存在一个 num 和为 i。 最后返回 dp[target]。

class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int len = nums.size();
        int sum = 0;
        for (int num: nums) {
            sum += num;
        }
        if ((sum & 1) == 1) {
            return false;
        }

        int target = sum / 2;
        vector<bool> dp(target + 1);
        dp[0] = true;

        for(int num: nums){
            for(int i = target; i >= num; i--){
               
                dp[i] = dp[i] || dp[i - num];
            }
        }
        return dp[target];
        
    }
};

复杂度分析:

时间复杂度:O(target × n),其中 n 是数组 nums 的长度。
空间复杂度:O(target)。
494. 目标和

我们想要的 S = 正数和 - 负数和 = x - y 而已知 x 与 y 的和是数组总和:x + y = sum 可以求出 x = (S + sum) / 2 = target 也就是我们要从 nums 数组里选出几个数,令其和为 target(target 间接给出)。 于是转化为是否可以用 nums 中的数组合和成 target,01 背包问题,外层循环为选择池 nums,内层循环为 target。 dp[i] 表示和为 i 的 num 组合有 dp[i] 种。

外层遍历 nums 每个 num;
内层遍历 target(由大到小)。
对于元素之和等于 i - num 的每一种排列,在最后添加 num 之后即可得到一个元素之和等于 i 的排列,因此在计算 dp[i] 时,应该计算所有的 dp[i − num] 之和。 dp[i] = dp[i] + dp[i - num] 对于边界条件,我们定义 dp[0] = 1 表示只有当不选取任何元素时,元素之和才为 0,因此只有 1 种方案。 最后返回 dp[target]

class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int S) {
        int sum = 0;
        for(int num : nums) sum += num;
        if(S > sum || (S + sum) % 2 == 1) return 0;
        int target = (S + sum) / 2;
        vector<int> dp(target + 1);
        dp[0] = 1;
        for(int num : nums){
            for(int i = target; i >= num; i--){               
                dp[i] = dp[i] + dp[i - num];
            }
        }
        return dp[target];
    }
};

复杂度分析:

时间复杂度:O(target × n),其中 n 是数组 nums 的长度。
空间复杂度:O(target)。
完全背包问题
139. 单词拆分

转化为是否可以用 wordDict 中的词组合成 s,完全背包问题,并且为“考虑排列顺序的完全背包问题”,外层循环为 target ,内层循环为选择池 wordDict。 dp[i] 表示以 i 结尾的字符串是否可以被 wordDict 中组合而成。

外层遍历 s 中每一个与 word 同长度的字串 s.substr(i - sz, sz) ;
内层遍历 wordDict 每个 word。
判断 s.substr(i - sz, sz) == word: (1)若不相等,说明与该 word 不匹配,继续遍历; (2)若相等,说明从 [i - sz] 到 i 的字符与 word 匹配。 dp[i] = dp[i] || d[[i - sz]] 对于边界条件,我们定义 dp[0] = true 表示空串且合法。 最后返回 dp[s.size()]

class Solution {
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        vector<bool> dp(s.size() + 1);
        dp[0] = true;
        for(int i = 1; i <= s.size(); i++){
            for(auto& word: wordDict){
                int sz = word.size();        
                if (i - sz >= 0 && s.substr(i - sz, sz) == word)
                    dp[i] = dp[i] || dp[i - sz];            
            }       
        }
        return dp[s.size()];
    }   
};

复杂度分析

时间复杂度:O(target × n),其中 n 是数组 nums 的长度。
空间复杂度:O(target)。
279. 完全平方数 我们想要的 S = 若干个完全平方数的和 完全平方数最小为 1,最大为 sqrt(n) 也就是我们要从 nums = [1, 2, ..., sqrt(n)] 数组里选出几个数,令其平方和为 target = n。 于是转化为是否可以用 nums 中的数组合和成 target,完全背包问题,外层循环为选择池 nums,内层循环为 target。 dp[i] 表示和为 i 的 nums 组合中完全平方数最少有 dp[i] 个。

外层遍历 nums 每个 num;
内层遍历 n。

class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n+1, INT_MAX);;
        
        dp[0]=0;
        for(int num = 1; num <= sqrt(n); num++){
            for(int i = 0; i <= n; i++){
                if(i >= num * num)
                    dp[i] = min(dp[i], dp[i - num * num] + 1);
            }
        }
        return dp[n];
    }
};

对于元素之和等于 i - num * num 的每一种组合,在最后添加 num 之后即可得到一个元素平方和等于 i 的组合,因此在计算 dp[i] 时,应该计算所有的 dp[i − num * num] + 1 中的最小值。 dp[i] = min(dp[i], dp[i - num * num] + 1) 对于边界条件,我们定义 dp[0] = 0。 最后返回 dp[n]

复杂度分析

时间复杂度:O(n x sqrt{n}),在主步骤中,我们有一个嵌套循环,其中外部循环是 n 次迭代,而内部循环最多需要 sqrt{n} 迭代。
空间复杂度:O(n),使用了一个一维数组 dp。
322. 零钱兑换

转化为是否可以用 coins 中的数组合和成 amount,完全背包问题,并且为“不考虑排列顺序的完全背包问题”,外层循环为选择池 coins,内层循环为 amount。 dp[i] 表示和为 i 的 coin 组合中硬币最少有 dp[i] 个。

外层遍历 coins 每个 coin;
内层遍历 amount。
对于元素之和等于 i - coin 的每一种组合,在最后添加 coin 之后即可得到一个元素之和等于 i 的组合,因此在计算 dp[i] 时,应该计算所有的 dp[i − coin] + 1 中的最小值。 dp[i] = min(dp[i], dp[i - coin] + 1) 对于边界条件,我们定义 dp[0] = 0。 最后返回 dp[amount]

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {      
        vector<long long> dp(amount+1, INT_MAX);
        dp[0] = 0;
        for(int& coin: coins){
            for(int i = 0; i <= amount; i++){
                if(coin <= i)
                    dp[i] = min(dp[i], dp[i-coin] + 1);
            }
                
        }                        
        return dp[amount] == INT_MAX ? -1 : dp[amount];
    }
};

复杂度分析:

时间复杂度:O(amount x n),其中 n 为 coins 大小
空间复杂度:O(amount)
377. 组合总和 Ⅳ

转化为是否可以用 nums 中的数组合和成 target,完全背包问题,并且为“考虑排列顺序的完全背包问题”,外层循环为 target ,内层循环为选择池 nums。 dp[i] 表示和为 i 的 num 组合有 dp[i] 种。

外层遍历 target;
内层遍历 nums 每个 num。
对于元素之和等于 i - num 的每一种排列,在最后添加 num 之后即可得到一个元素之和等于 i 的排列,因此在计算 dp[i] 时,应该计算所有的 dp[i − num] 之和。 dp[i] = dp[i] + dp[i - num] 对于边界条件,我们定义 dp[0] = 1 表示只有当不选取任何元素时,元素之和才为 0,因此只有 1 种方案。 最后返回 dp[target]

class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        vector<int> dp(target + 1);
        dp[0] = 1;
        for(int i = 1; i <= target; i++){
            for(int& num: nums){
                if(num <= i && dp[i - num] < INT_MAX - dp[i])
                    dp[i] += dp[i - num];
            }
        }
        return dp[target];
    }
};

复杂度分析:

时间复杂度:O(target x n),其中 n 为 wordDict 大小
空间复杂度:O(target)
518. 零钱兑换 II 转化为是否可以用 coins 中的数组合和成 amount,完全背包问题,并且为“不考虑排列顺序的完全背包问题”,外层循环为选择池 coins,内层循环为 amount。 dp[i] 表示和为 i 的 coin 组合有 dp[i] 种。

外层遍历 coins 每个 coin;
内层遍历 amount。
对于元素之和等于 i - coin 的每一种组合,在最后添加 coin 之后即可得到一个元素之和等于 i 的组合,因此在计算 dp[i] 时,应该计算所有的 dp[i − coin] 之和。 dp[i] = dp[i] + dp[i - coin] 对于边界条件,我们定义 dp[0] = 1,表示只有当不选取任何元素时,元素之和才为 0,因此只有 1 种方案。 最后返回 dp[amount]。

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int> dp(amount + 1);
        dp[0] = 1;
        for(int& coin: coins){
            for(int i = 0; i <= amount; i++){
            
                if(coin <= i)
                    dp[i] += dp[i - coin];
            }
        }
        return dp[amount];
    }
};

复杂度分析:

时间复杂度:O(amount x n),其中 n 为 coins 大小
空间复杂度:O(amount)

转载:
https://leetcode.cn/problems/coin-change-ii/solutions/783992/yi-pian-wen-zhang-chi-tou-bei-bao-wen-ti-2xkk/?envType=study-plan-v2&envId=dynamic-programming
https://leetcode.cn/problems/coin-change-ii/solutions/744156/yi-tao-kuang-jia-jie-jue-bei-bao-wen-ti-6kaze/?envType=study-plan-v2&envId=dynamic-programming

标签:背包,target,框架,nums,int,num,一套,dp
From: https://www.cnblogs.com/xiaohaigegede/p/17695732.html

相关文章

  • JAVA集合框架体系
    集合框架--容器包容JAVA集合框架中的类可以用于存储多个队系那个,还可用于保存具有映射关系的关联数组。Collection接口单列数据集合。存储一个一个的数据。#常用方法:增add(Eobj)-->加的是一个addall(Collectionother)-->加基本单元,五个小单元组成的中单元放进......
  • IDEA2023.2以上版本没有“添加框架支持”(Add Framework Support)选项解决办法
    问题:IDEA升级2023.2以上版本后,想创建JavaWeb项目,无法在“新建项目”后,通过鼠标右键“添加框架支持”(AddFrameworkSupport)的方式添加Web支持。 解决办法:选中模块,双击shift(或“帮助”菜单-->查找),选择操作,中文版搜索“添加框架支持”,英文版搜索“AddFrameworkSupport”,即可......
  • AcWing 5. 多重背包问题 II
    题目有$N$种物品和一个容量是$V$的背包。第$i$种物品最多有$s_i$件,每件体积是$v_i$,价值是$w_i$。求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。输入格式第一行两个整数,$N,V$,用空格隔开,分别表示物品种数和背包容积。接下来......
  • 一套UWB室内外高精度定位系统源码
    智慧工厂是现代工厂信息化发展的新阶段,基于UWB定位技术,融合位置物联网、GIS可视化等技术,实现对人员、物资精确管理。在重点区域设置电子围栏,无权限人员进入即刻告警;对人员超/缺员、串岗滞留等规范化管理,提升工厂的秩序管理及生产效率。定位能力:支持零维、一维、二维等多种定位方式,......
  • [框架设计之道(二)]设备、任务设置及业务流程
    目录说明此文档是开发中对设备设置项的管理。因为硬件在使用的过程中涉及大量设置项,因此需要单独开一篇文档说明设备的设置和任务的设置。一、设备设置1.基础接口//////配置文件管理模块///classTSG_ConfigHelper:publicTSG_Framework{public:virtualboolInit......
  • 最接地气的.NET微服务框架
    前言:“人必有所执,方能有所成”,从2018年底我就开始规划要写一个.NET微服务框架,5年了,今天终于正式发布了。正文: Wing 致力于打造一个功能强大、最接地气的.NET微服务框架,支持.NETCore3.1+运行平台。支持Consul服务注册与发现,服务间通讯支持http和grpc调用,内置负载均......
  • AtCoder Beginner Contest 044 C (背包DP、思维、*1583)
    C-TakandCards题意:给定$N$个正整数$x_1,x_2,\cdot\cdot\cdot,x_n$和一个正整数$A$,问从中选择$k$个数\((k>0)\),满足:这$k$个数的平均值是$A$的方案总数是多少?思路:......
  • 背包模型
    状态表示是化零为整的过程,将一些零碎的数据化为一个集合状态计算是化整为零的过程,需要将上述得到的集合分解为具体的数据才能进行计算01背包问题描述有$N$件物品和一个容量是$V$的背包。每件物品只能使用一次。第$i$件物品的体积是$v_i$,价值是$w_i$。求解将哪些物品......
  • Leetcode刷题本地debug框架搭建
    思路1.初版cmake+单一.cpp文件参考:https://blog.songjiahao.com/archives/3622.改良版cmake+源文件、头文件(含List、Tree等数据结构)分离+gtest参考:https://github.com/Pokerpoke/LeetCode Normal模板以Leetcode1两数之和为例#include<iostream>#include......
  • 原生JavaScript框架设计(一):整合JS函数
    本篇为回顾js时总结,诣在整理JS中常用知识点,剖析其规律。模仿jQuery,简单一些,特定功能,像apply函数、getElementXXX函数等浏览器函数都没有实现,直接套用。创建common.js://自定义实现push函数varmyPush=function(target,els){ varj=target.length, i=0; while((target[j++]=e......