题目大意
定义长度为 \(n\) 的序列 \(a\) 的权值为:
- 所有的 \(n\) 个点的第 \(i\) 个点的度数为 \(a_i\) 的树的直径最大值,如果不存在这样的树,其权值为 \(0\)。
给定 \(n\),求所有长度为 \(n\) 的序列的权值和。
思路分析
\(n\) 个点的树的边数为 \(n-1\),总度数为 \(2n-2\),故序列 \(a\) 的权值不为 \(0\) 当且仅当 \(\sum a=2n-2\) 且 \(a_i>0\),因此我们只需要考虑这样的序列即可。
考虑如何根据给定序列构造出直径最大的树,设 \(a\) 中有 \(k\) 个 \(1\),也就是树上有 \(k\) 个叶子节点,那么我们可以将剩下的 \(n-k\) 个节点全部串在一起,再在两端放上两个叶子节点,用 \(n-k+2\) 个点构造出一条长 \(n-k+1\) 的链,其余的叶子节点挂在链上,显然这是最优方案,直径为 \(n-k+1\)。
考虑计数。枚举 \(k\),那么叶子节点的选择方案数为 \({n \choose k}\)。而非叶子节点的度数必须大于 \(1\),且有 \(n-k\) 个,又因为剩余的可用度数为 \(2n-2-k\),所以这个问题等价于将 \(2n-2-k\) 个相同的球放在 \(n-k\) 个盒子里,且每个盒子的球必须大于 \(1\),由插板法易得其方案数为:
\[{(2n-2-k)-2(n-k)+(n-k)-1\choose (2n-2-k)-2(n-k)}={n-3\choose k-2} \]再算上直径产生的贡献,故我们所求式即:
\[\sum_{k=1}^n{n\choose k}{n-3\choose k-2}(n-k+1) \]这个式子可以 \(O(n)\) 计算,但这显然不够,我们需要继续化简。
我们有以下两个式子:
-
吸收恒等式:\(k{n\choose k}=n{n-1\choose k-1}\)
-
范德蒙德卷积:\(\sum\limits_{i=0}^k{n\choose i}{m\choose k-i}={n+m\choose k}\)
一式可以直接拆组合数简单证明,二式通过组合意义显然成立。
然后我们就可以通过以上两个式子对所求式进行化简了:
\[\begin{aligned} \sum_{k=1}^n{n\choose k}{n-3\choose k-2}(n-k+1)&= -\sum_{k=1}^n{n\choose k}{n-3\choose k-2}(k-2+1-n)\\&= -\sum_{k=1}^n{n\choose k}{n-3\choose k-2}(k-2)+(n-1)\sum_{k=1}^n{n\choose k}{n-3\choose k-2}\\&= (n-1)\sum_{k=1}^n{n\choose k}{n-3\choose k-2}-(n-3)\sum_{k=1}^n{n\choose k}{n-4\choose k-3}\\&= (n-1)\sum_{k=1}^n{n\choose k}{n-3\choose n-k-1}-\sum_{k=1}^n{n\choose k}{n-4\choose n-k-1}\\&= (n-1){2n-3\choose n-1}-(n-3){2n-4\choose n-3} \end{aligned}\]化到这样就可以 \(O(1)\) 计算了,只需要 \(O(n)\) 预处理组合数就行了。
代码
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
const int N = 2002000, L = 2000000, mod = 998244353;
#define int long long
int fac[N], inv[N];
int T, n;
int q_pow(int a, int b){
int res = 1;
while (b) {
if (b & 1) res = (res * a) % mod;
a = (a * a) % mod;
b >>= 1;
}
return res;
}
int C(int n, int m){
if(n < m || n < 0 || m < 0) return 0;
return fac[n] * (inv[m] * inv[n - m] % mod) % mod;
}
signed main(){
fac[0] = 1;
for (int i = 1; i <= L; i ++) fac[i] = fac[i - 1] * i % mod;
inv[L] = q_pow(fac[L], mod - 2);
for (int i = L; i >= 1; i --) inv[i - 1] = inv[i] * i % mod;
scanf("%lld", &T);
while (T --) {
scanf("%lld", &n);
int res1 = (n - 1) * C(2 * n - 3, n - 1) % mod;
int res2 = (n - 3) * C(2 * n - 4, n - 3) % mod;
int ans = (res1 - res2 + mod) % mod;
cout << ans << '\n';
}
return 0;
}
标签:Diameter,int,题解,sum,Maximum,choose,2n,include,mod
From: https://www.cnblogs.com/TKXZ133/p/17672694.html