题目
A proper vertex coloring is a labeling of the graph's vertices with colors such that no two vertices sharing the same edge have the same color. A coloring using at most k colors is called a (proper) k-coloring.
Now you are supposed to tell if a given coloring is a proper k-coloring.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N and M (both no more than 104), being the total numbers of vertices and edges, respectively. Then M lines follow, each describes an edge by giving the indices (from 0 to N−1) of the two ends of the edge.
After the graph, a positive integer K (≤ 100) is given, which is the number of colorings you are supposed to check. Then K lines follow, each contains N colors which are represented by non-negative integers in the range of int. The i-th color is the color of the i-th vertex.
Output Specification:
For each coloring, print in a line k-coloring
if it is a proper k
-coloring for some positive k
, or No
if not.
Sample Input:
10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 0
2 4
4
0 1 0 1 4 1 0 1 3 0
0 1 0 1 4 1 0 1 0 0
8 1 0 1 4 1 0 5 3 0
1 2 3 4 5 6 7 8 8 9
Sample Output:
4-coloring
No
6-coloring
No
题目大意:给出一个图(先给出所有边,后给出每个点的颜色),问是否满足:所有的边的两个点的颜色不相同
思路:
1、使用结构体数组来存储边,然后遍历所有的边,若存在边上两个端点的颜色相同的情况就输出No
2、可以利用集合来计算不同颜色的个数
代码:
#include<stdio.h> #include<iostream> #include<set> #include<string.h> int n, m, k; bool v[10005][10005] = {0}; int color[10005]; using namespace std; struct Edge{ int node1, node2; }edge[10005]; int main(){ scanf("%d%d", &n, &m); for(int i = 0; i < m; i++){ int x, y; scanf("%d%d", &x, &y); edge[i].node1 = x; edge[i].node2 = y; } scanf("%d", &k); for(int i = 0; i < k; i++){ set<int> se; memset(color, -1, sizeof(color)); for(int j = 0; j < n; j++){ scanf("%d", &color[j]); se.insert(color[j]); } bool flag = true; for(int j = 0; j < m; j++){ if(color[edge[j].node1] == color[edge[j].node2]){ flag = false; break; } } if(flag){ printf("%d-coloring\n", se.size()); }else{ printf("No\n"); } } return 0; }
标签:Coloring,No,color,1154,Vertex,edge,int,coloring,each From: https://www.cnblogs.com/yccy/p/17658123.html