Kafka核心总控制器Controller 在Kafka集群中会有一个或者多个broker,其中有一个broker会被选举为控制器(Kafka Controller),它负责管理整个集群中所有分区和副本的状态。
- 当某个分区的leader副本出现故障时,由控制器负责为该分区选举新的leader副本。
- 当检测到某个分区的ISR集合发生变化时,由控制器负责通知所有broker更新其元数据信息。
- 当使用kafka-topics.sh脚本为某个topic增加分区数量时,同样还是由控制器负责让新分区被其他节点感知到。
- 监听broker相关的变化。为Zookeeper中的/brokers/ids/节点添加BrokerChangeListener,用来处理broker增减的变化。
- 监听topic相关的变化。为Zookeeper中的/brokers/topics节点添加TopicChangeListener,用来处理topic增减的变化;为Zookeeper中的/admin/delete_topics节点添加TopicDeletionListener,用来处理删除topic的动作。
- 从Zookeeper中读取获取当前所有与topic、partition以及broker有关的信息并进行相应的管理。对于所有topic所对应的Zookeeper中的/brokers/topics/[topic]节点添加PartitionModificationsListener,用来监听topic中的分区分配变化。
- 更新集群的元数据信息,同步到其他普通的broker节点中。
- 副本节点不能产生网络分区,必须能与zookeeper保持会话以及跟leader副本网络连通
- 副本能复制leader上的所有写操作,并且不能落后太多。(与leader副本同步滞后的副本,是由 replica.lag.time.max.ms 配置决定的,超过这个时间都没有跟leader同步过的一次的副本会被移出ISR列表)
- 消费组里的consumer增加或减少了
- 动态给topic增加了分区
- 消费组订阅了更多的topic
第一阶段:选择组协调器 组协调器GroupCoordinator:每个consumer group都会选择一个broker作为自己的组协调器coordinator,负责监控这个消费组里的所有消费者的心跳,以及判断是否宕机,然后开启消费者rebalance。 consumer group中的每个consumer启动时会向kafka集群中的某个节点发送 FindCoordinatorRequest 请求来查找对应的组协调器GroupCoordinator,并跟其建立网络连接。 组协调器选择方式: consumer消费的offset要提交到__consumer_offsets的哪个分区,这个分区leader对应的broker就是这个consumer group的coordinator 第二阶段:加入消费组JOIN GROUP 在成功找到消费组所对应的 GroupCoordinator 之后就进入加入消费组的阶段,在此阶段的消费者会向 GroupCoordinator 发送 JoinGroupRequest 请求,并处理响应。然后GroupCoordinator 从一个consumer group中选择第一个加入group的consumer作为leader(消费组协调器),把consumer group情况发送给这个leader,接着这个leader会负责制定分区方案。 第三阶段( SYNC GROUP) consumer leader通过给GroupCoordinator发送SyncGroupRequest,接着GroupCoordinator就把分区方案下发给各个consumer,他们会根据指定分区的leader broker进行网络连接以及消息消费。 producer发布消息机制剖析 1、写入方式 producer 采用 push 模式将消息发布到 broker,每条消息都被 append 到 patition 中,属于顺序写磁盘(顺序写磁盘效率比随机写内存要高,保障 kafka 吞吐率)。 2、消息路由 producer 发送消息到 broker 时,会根据分区算法选择将其存储到哪一个 partition。其路由机制为: 1. 指定了 patition,则直接使用; 2. 未指定 patition 但指定 key,通过对 key 的 value 进行hash 选出一个 patition 3. patition 和 key 都未指定,使用轮询选出一个 patition。 3、写入流程
1. producer 先从 zookeeper 的 "/brokers/.../state" 节点找到该 partition 的 leader 2. producer 将消息发送给该 leader 3. leader 将消息写入本地 log 4. followers 从 leader pull 消息,写入本地 log 后 向leader 发送 ACK 5. leader 收到所有 ISR 中的 replica 的 ACK 后,增加 HW(high watermark,最后 commit 的 offset) 并向 producer 发送 ACK HW与LEO详解 HW俗称高水位,HighWatermark的缩写,取一个partition对应的ISR中最小的LEO(log-end-offset)作为HW,consumer最多只能消费到HW所在的位置。另外每个replica都有HW,leader和follower各自负责更新自己的HW的状态。对于leader新写入的消息,consumer不能立刻消费,leader会等待该消息被所有ISR中的replicas同步后更新HW,此时消息才能被consumer消费。这样就保证了如果leader所在的broker失效,该消息仍然可以从新选举的leader中获取。对于来自内部broker的读取请求,没有HW的限制。 下图详细的说明了当producer生产消息至broker后,ISR以及HW和LEO的流转过程:
由此可见,Kafka的复制机制既不是完全的同步复制,也不是单纯的异步复制。事实上,同步复制要求所有能工作的follower都复制完,这条消息才会被commit,这种复制方式极大的影响了吞吐率。而异步复制方式下,follower异步的从leader复制数据,数据只要被leader写入log就被认为已经commit,这种情况下如果follower都还没有复制完,落后于leader时,突然leader宕机,则会丢失数据。而Kafka的这种使用ISR的方式则很好的均衡了确保数据不丢失以及吞吐率。再回顾下消息发送端对发出消息持久化机制参数acks的设置,我们结合HW和LEO来看下acks=1的情况 结合HW和LEO看下 acks=1的情况
日志分段存储 Kafka 一个分区的消息数据对应存储在一个文件夹下,以topic名称+分区号命名,消息在分区内是分段(segment)存储,每个段的消息都存储在不一样的log文件里,这种特性方便old segment file快速被删除,kafka规定了一个段位的 log 文件最大为 1G,做这个限制目的是为了方便把 log 文件加载到内存去操作:
# 部分消息的offset索引文件,kafka每次往分区发4K(可配置)消息就会记录一条当前消息的offset到index文件, # 如果要定位消息的offset会先在这个文件里快速定位,再去log文件里找具体消息 00000000000000000000.index # 消息存储文件,主要存offset和消息体 00000000000000000000.log # 消息的发送时间索引文件,kafka每次往分区发4K(可配置)消息就会记录一条当前消息的发送时间戳与对应的offset到timeindex文件, # 如果需要按照时间来定位消息的offset,会先在这个文件里查找 00000000000000000000.timeindex 00000000000005367851.index 00000000000005367851.log 00000000000005367851.timeindex 00000000000009936472.index 00000000000009936472.log 00000000000009936472.timeindex这个 9936472 之类的数字,就是代表了这个日志段文件里包含的起始 Offset,也就说明这个分区里至少都写入了接近 1000 万条数据了。 Kafka Broker 有一个参数,log.segment.bytes,限定了每个日志段文件的大小,最大就是 1GB。 一个日志段文件满了,就自动开一个新的日志段文件来写入,避免单个文件过大,影响文件的读写性能,这个过程叫做 log rolling,正在被写入的那个日志段文件,叫做 active log segment。 最后附一张zookeeper节点数据图: 标签:分区,broker,kafka,topic,详解,原理,consumer,leader From: https://www.cnblogs.com/ladeng19/p/17653743.html