Uniform Distribution:
U(a, b):
- F(x) = x ·1/(b-a)
- p(x) = 1/(b-a) if q<x<b; p(x) = 0 else.
- E(x) = (a+b)/2
Cauchy Distribution:
- F(x) = [arctan(x) + pi/2 ]·1/pi
- p(x) = [1/(1+x^2)] · 1/pi
- E(x) : non-exist
Uniform Distribution:
U(a, b):
Cauchy Distribution: