首页 > 编程语言 >CesiumJS 源码杂谈 - 从光到 Uniform

CesiumJS 源码杂谈 - 从光到 Uniform

时间:2023-04-16 23:35:07浏览次数:42  
标签:function 从光 uniforms czm ... color CesiumJS 源码 ._

目录


之前对实时渲染(RealTimeRendering)的殿堂就十分向往,也有简单了解过实时渲染中的光,无奈一直没能系统学习。鉴于笔者已经有一点 CesiumJS 源码基础,所以就抽了一个周末跟了跟 CesiumJS 中的光照初步,在简单的代码追踪后,发现想系统学习光照材质,仍然是需要 RTR 知识的,这次仅仅了解了光在 CesiumJS 底层中是如何从 API 传递到 WebGL 着色器中去的,为之后深入研究打下基础。

1. 有什么光

CesiumJS 支持的光的类型比较少,默认场景光就一个太阳光:

// Scene 类构造函数中

this.light = new SunLight();

从上面这代码可知,CesiumJS 目前场景中只支持加入一个光源。

查阅 API,可得知除了 SubLight 之外,还有一个 DirectionalLight,即方向光。

官方示例代码《Lighting》中就使用了方向光来模拟手电筒效果(flashLight)、月光效果(moonLight)、自定义光效果。

方向光比太阳光多出来一个必选的方向属性:

const flashLight = new DirectionalLight({
  direction: scene.camera.directionWC // 每帧都不一样,手电筒一直沿着相机视线照射
})

这个 direction 属性是一个单位向量即可(模长是 1)。

说起来归一化、规范化、标准化好像都能在网上找到与单位向量类似的意思,都是向量除以模长。

可见,CesiumJS 并没有内置点光源、聚光灯,需要自己写着色过程(请参考 Primitive API 或 CustomShader API)。

2. 光如何转换成 Uniform 以及何时被调用

既然 CesiumJS 支持的光只有一个,那么调查起来就简单了。先给结论:

光是作为 Uniform 值传递到着色器中的。 先查清楚光是如何从 Scene.light 转至 Renderer 中的 uniform 的。

2.1. 统一值状态对象(UniformState)

在 Scene 渲染一帧的过程中,几乎就在最顶部,Scene.js 模块内的函数 render 就每帧更新着 Context 对象的 uniformState 属性:

function render(scene) {
  const frameState = scene._frameState;

  const context = scene.context;
  const us = context.uniformState;

  // ...

  us.update(frameState);

  // ...
}

这个 uniformState 对象就是 CesiumJS 绝大多数统一值(Uniform)的封装集合,它的更新方法就会更新来自帧状态对象(FrameState)的光参数:

UniformState.prototype.update = function (frameState) {
  // ...
  const light = defaultValue(frameState.light, defaultLight);
  if (light instanceof SunLight) { /**/ }
  else { /**/ }

  const lightColor = light.color;
  // 计算 HDR 光到 this._lightColor 上

  // ...
}

那么,这个挂在 Context 上的 uniformState 对象包含的光状态信息,是什么时候被使用的呢?下一小节 2.2 就会介绍。

2.2. 上下文(Context)执行 DrawCommand

在 Scene 的更新过程中,最后 DrawCommand 对象被 Context 对象执行:

function continueDraw(context, drawCommand, shaderProgram, uniformMap) {
  // ...
  shaderProgram._setUniforms(
    uniformMap,
    context._us,
    context.validateShaderProgram
  )
  // ...
}

Context.prototype.draw = function (/* ... */) {
  // ...
  shaderProgram = defaultValue(shaderProgram, drawCommand._shaderProgram);
  uniformMap = defaultValue(uniformMap, drawCommand._uniformMap);

  beginDraw(this, framebuffer, passState, shaderProgram, renderState);
  continueDraw(this, drawCommand, shaderProgram, uniformMap);
}

就在 continueDraw 函数中,调用了 ShaderProgram 对象的 _setUniforms 方法,所有 Uniform 值在此将传入 WebGL 状态机中。

ShaderProgram.prototype._setUniforms = function (/**/) {
  // ...
  const uniforms = this._uniforms;
  len = uniforms.length;
  for (i = 0; i < len; ++i) {
    uniforms[i].set();
  }
  // ...
}

而这每一个 uniforms[i],都是一个没有公开在 API 文档中的私有类,也就是接下来 2.3 小节中要介绍的 WebGL Uniform 值封装对象。

2.3. 对 WebGL Uniform 值的封装

进入 createUniforms.js 模块:

// createUniforms.js

UniformFloat.prototype.set = function () { /* ... */ }
UniformFloatVec2.prototype.set = function () { /* ... */ }
UniformFloatVec3.prototype.set = function () { /* ... */ }
UniformFloatVec4.prototype.set = function () { /* ... */ }
UniformSampler.prototype.set = function () { /* ... */ }
UniformInt.prototype.set = function () { /* ... */ }
UniformIntVec2.prototype.set = function () { /* ... */ }
UniformIntVec3.prototype.set = function () { /* ... */ }
UniformIntVec4.prototype.set = function () { /* ... */ }
UniformMat2.prototype.set = function () { /* ... */ }
UniformMat3.prototype.set = function () { /* ... */ }
UniformMat4.prototype.set = function () { /* ... */ }

可以说把 WebGL uniform 的类型都封装了一个私有类。

以表示光方向的 UniformFloatVec3 类为例,看看它的 WebGL 调用:

function UniformFloatVec3(gl, activeUniform, uniformName, location) {
  this.name = uniformName

  this.value = undefined
  this._value = undefined

  this._gl = gl
  this._location = location
}

UniformFloatVec3.prototype.set = function () {
  const v = this.value

  if (defined(v.red)) {
    if (!Color.equals(v, this._value)) {
      this._value = Color.clone(v, this._value)
      this._gl.uniform3f(this._location, v.red, v.green, v.blue)
    }
  } else if (defined(v.x)) {
    if (!Cartesian3.equals(v, this._value)) {
      this._value = Cartesian3.clone(v, this._value)
      this._gl.uniform3f(this._location, v.x, v.y, v.z)
    }
  } else {
    throw new DeveloperError(`Invalid vec3 value for uniform "${this.name}".`);
  }
}

2.4. 自动统一值(AutomaticUniforms)

在 2.2 小节中有一个细节没有详细说明,即 ShaderProgram_setUniforms 方法中为什么可以直接调用每一个 uniforms[i]set()

回顾一下:

  • Scene.jsrender 函数内,光的信息被 us.update(frameState) 更新至 UniformState 对象中;

  • ShaderProgram_setUniforms 方法,调用 uniforms[i].set() 方法, 更新每一个私有 Uniform 对象上的值到 WebGL 状态机中

是不是缺少了点什么?

是的,UniformState 的值是如何赋予给 uniforms[i] 的?

这就不得不提及 ShaderProgram.js 模块中为当前着色器对象的 Uniform 分类过程了,查找模块中的 reinitialize 函数:

function reinitialize(shader) {
  // ...
  const uniforms = findUniforms(gl, program)
  const partitionedUniforms = partitionUniforms(
    shader,
    uniforms.uniformsByName
  )

  // ...
  shader._uniformsByName = uniforms.uniformsByName
  shader._uniforms = uniforms.uniform
  shader._automaticUniforms = partitionedUniforms.automaticUniforms
  shader._manualUniforms = partitionedUniforms.manualUniforms
  // ...
}

它把着色器对象上的 Uniform 全部找了出来,并分类为:

  • _uniformsByName - 一个字典对象,键名是着色器中 uniform 的变量名,值是 Uniform 的封装对象,例如 UniformFloatVec3

  • _uniforms - 一个数组,每个元素都是 Uniform 的封装对象,例如 UniformFloatVec3 等,若同名,则与 _uniformsByName 中的值是同一个引用

  • _manualUniforms - 一个数组,每个元素都是 Uniform 的封装对象,例如 UniformFloatVec3 等,若同名,则与 _uniformsByName 中的值是同一个引用

  • _automaticUniforms - 一个数组,每个元素是一个 object 对象,表示要 CesiumJS 自动更新的 Uniform 的映射关联关系

举例,_automaticUniforms[i] 用 TypeScript 来描述,是这么一个对象:

type AutomaticUniformElement = {
  automaticUniform: AutomaticUniform
  uniform: UniformFloatVec3
}

而这个 _automaticUniforms 就拥有自动更新 CesiumJS 内部状态的 Uniform 值的功能,例如我们所需的光状态信息。

来看 AutomaticUniforms.js 模块的默认导出对象:

// AutomaticUniforms.js

const AutomaticUniforms = {
  // ...
  czm_sunDirectionEC: new AutomaticUniform({ /**/ }),
  czm_sunDirectionWC: new AutomaticUniform({ /**/ }),
  czm_lightDirectionEC: new AutomaticUniform({ /**/ }),
  czm_lightDirectionWC: new AutomaticUniform({ /**/ }),
  czm_lightColor: new AutomaticUniform({
    size: 1,
    datatype: WebGLConstants.FLOAT_VEC3,
    getValue: function (uniformState) {
      return uniformState.lightColor;
    },
  }),
  czm_lightColorHdr:  new AutomaticUniform({ /**/ }),
  // ...
}
export default AutomaticUniforms

所以,在 ShaderProgram.prototype._setUniforms 执行的时候,其实是对自动统一值有一个赋值的过程,然后才到各个 uniforms[i]set() 过程:

ShaderProgram.prototype._setUniforms = function (
  uniformMap,
  uniformState,
  validate
) {
  let len;
  let i;

  // ...

  const automaticUniforms = this._automaticUniforms;
  len = automaticUniforms.length;
  for (i = 0; i < len; ++i) {
    const au = automaticUniforms[i];
    au.uniform.value = au.automaticUniform.getValue(uniformState);
  }

  // 译者注:au.uniform 实际上也在 this._uniforms 中
  // 是同一个引用在不同的位置,所以上面调用 au.automaticUniform.getValue 
  // 之后,下面 uniforms[i].set() 就会使用的是 “自动更新” 的 uniform 值

  const uniforms = this._uniforms;
  len = uniforms.length;
  for (i = 0; i < len; ++i) {
    uniforms[i].set();
  }

  // ...
}

也许这个过程有些乱七八糟,那就再简单梳理一次:

  • Scene 的 render 过程中,更新了 uniformState

  • Context 执行 DrawCommand 过程中,ShaderProgram 的 _setUniforms 执行所有 uniforms 的 WebGL 设置,这其中就会对 CesiumJS 内部不需要手动更新的 Uniform 状态信息进行自动刷新

  • 而在 ShaderProgram 绑定前,早就会把这个着色器中的 uniform 进行分组,一组是常规的 uniform 值,另一组则是需要根据 AutomaticUniform(自动统一值)更新的 uniform 值

说到底,光状态信息也不过是一种 Uniform,在最原始的 WebGL 学习教材中也是如此,只不过 CesiumJS 是一个更复杂的状态机器,需要更多逻辑划分就是了。

3. 在着色器中如何使用

上面介绍完光的类型、在 CesiumJS 源码中如何转化成 Uniform 并刷入 WebGL,那么这一节就简单看看光的状态 Uniform 在着色器代码中都有哪些使用之处。

3.1. 点云

PointCloud.js 使用了 czm_lightColor

找到 createShaders 函数下面这个分支:

// Version 1.104

function createShaders(pointCloud, frameState, style) {
  // ...
  if (usesNormals && normalShading) {
    vs +=
      "    float diffuseStrength = czm_getLambertDiffuse(czm_lightDirectionEC, normalEC); \n" +
      "    diffuseStrength = max(diffuseStrength, 0.4); \n" + // Apply some ambient lighting
      "    color.xyz *= diffuseStrength * czm_lightColor; \n";
  }
  // ...
}

显然,这段代码在拼凑顶点着色器代码,在 1.104 版本官方并没有改变这种拼接着色器代码的模式。

着色代码的含义也很简单,将漫反射强度值乘上 czm_lightColor,把结果交给 color 的 xyz 分量。漫反射强度在这里限制了最大值 0.4。

漫反射强度来自内置 GLSL 函数 czm_getLambertDiffuse(参考 packages/engine/Source/Shaders/Builtin/Functions/getLambertDiffuse.glsl

3.2. 冯氏着色法

Primitive API 材质对象的默认着色方法是 冯氏着色法(Phong),这个在 LearnOpenGL 网站上有详细介绍。

调用链:

MaterialAppearance.js
  ┗ TexturedMaterialAppearanceFS.js ← TexturedMaterialAppearanceFS.glsl
    ┗ phong.glsl → vec4 czm_phong()

除了 TexturedMaterialAppearanceFS 外,MaterialAppearance.js 还用了 BasicMaterialAppearanceFSAllMaterialAppearanceFS 两个片元着色器,这俩也用到了 czm_phong 函数。

看看 czm_phong 函数本体:

// phong.glsl

vec4 czm_phong(vec3 toEye, czm_material material, vec3 lightDirectionEC)
{
    // Diffuse from directional light sources at eye (for top-down)
    float diffuse = czm_private_getLambertDiffuseOfMaterial(vec3(0.0, 0.0, 1.0), material);
    if (czm_sceneMode == czm_sceneMode3D) {
        // (and horizon views in 3D)
        diffuse += czm_private_getLambertDiffuseOfMaterial(vec3(0.0, 1.0, 0.0), material);
    }

    float specular = czm_private_getSpecularOfMaterial(lightDirectionEC, toEye, material);

    // Temporary workaround for adding ambient.
    vec3 materialDiffuse = material.diffuse * 0.5;

    vec3 ambient = materialDiffuse;
    vec3 color = ambient + material.emission;
    color += materialDiffuse * diffuse * czm_lightColor;
    color += material.specular * specular * czm_lightColor;

    return vec4(color, material.alpha);
}

函数内前面的计算步骤是获取漫反射、高光值,走的是辅助函数,在这个文件内也能看到。

最后灯光 czm_lightColor 和材质的漫反射、兰伯特漫反射、材质辉光等因子一起相乘累加,得到最终的颜色值。

除了 phong.glsl 外,参与半透明计算的 czm_translucentPhong 函数(在 translucentPhong.glsl 文件中)在 OIT.js 模块中用于替换 czm_phong 函数。

3.3. 地球

Globe.js 中使用的 GlobeFS 片元着色器代码中使用到了 czm_lightColor,主要是 main 函数中:

void main() {
// ...

#ifdef ENABLE_VERTEX_LIGHTING
    float diffuseIntensity = clamp(czm_getLambertDiffuse(czm_lightDirectionEC, normalize(v_normalEC)) * u_lambertDiffuseMultiplier + u_vertexShadowDarkness, 0.0, 1.0);
    vec4 finalColor = vec4(color.rgb * czm_lightColor * diffuseIntensity, color.a);
#elif defined(ENABLE_DAYNIGHT_SHADING)
    float diffuseIntensity = clamp(czm_getLambertDiffuse(czm_lightDirectionEC, normalEC) * 5.0 + 0.3, 0.0, 1.0);
    diffuseIntensity = mix(1.0, diffuseIntensity, fade);
    vec4 finalColor = vec4(color.rgb * czm_lightColor * diffuseIntensity, color.a);
#else
    vec4 finalColor = color;
#endif

// ...
}

同样是先获取兰伯特漫反射值(使用 clamp 函数钉死在 [0, 1] 区间内),然后将颜色、czm_lightColor、漫反射值和透明度一起计算出 finalColor,把最终颜色值交给下一步计算。

这里区分了两个宏分支,受 TerrainProvider 影响,有兴趣可以追一下 GlobeSurfaceTileProvider.js 模块中 addDrawCommandsForTile 函数中 hasVertexNormals 参数的获取。

3.4. 模型架构中的光着色阶段

在 1.97 大改的 Model API 中,PBR 着色法使用了 czm_lightColorHdr 变量。czm_lightColorHdr 也是自动统一值(AutomaticUniforms)的一个。

在 Model 的更新过程中,有一个 buildDrawCommands 的步骤,其中有一个函数 ModelRuntimePrimitive.prototype.configurePipeline 会增减 ModelRuntimePrimitive 上的着色阶段:

ModelRuntimePrimitive.prototype.configurePipeline = function (frameState) {
  // ...
  pipelineStages.push(LightingPipelineStage);
  // ...
}

上面是其中一个阶段 —— LightingPipelineStage,最后在 ModelSceneGraph.prototype.buildDrawCommands 方法内会调用每一个 stage 的 process 方法,调用 shaderBuilder 构建出着色器对象所需的材料,进而构建出着色器对象。过程比较复杂,直接看其中 LightingPipelineStage.glsl 提供的阶段函数:

void lightingStage(inout czm_modelMaterial material, ProcessedAttributes attributes)
{
    // Even though the lighting will only set the diffuse color,
    // pass all other properties so further stages have access to them.
    vec3 color = vec3(0.0);

    #ifdef LIGHTING_PBR
    color = computePbrLighting(material, attributes);
    #else // unlit
    color = material.diffuse;
    #endif

    #ifdef HAS_POINT_CLOUD_COLOR_STYLE
    // The colors resulting from point cloud styles are adjusted differently.
    color = czm_gammaCorrect(color);
    #elif !defined(HDR)
    // If HDR is not enabled, the frame buffer stores sRGB colors rather than
    // linear colors so the linear value must be converted.
    color = czm_linearToSrgb(color);
    #endif

    material.diffuse = color;
}

进入 computePbrLighting 函数(同一个文件内):

#ifdef LIGHTING_PBR
vec3 computePbrLighting(czm_modelMaterial inputMaterial, ProcessedAttributes attributes)
{
    // ...

    #ifdef USE_CUSTOM_LIGHT_COLOR
    vec3 lightColorHdr = model_lightColorHdr;
    #else
    vec3 lightColorHdr = czm_lightColorHdr;
    #endif

    vec3 color = inputMaterial.diffuse;
    #ifdef HAS_NORMALS
    color = czm_pbrLighting(
        attributes.positionEC,
        inputMaterial.normalEC,
        czm_lightDirectionEC,
        lightColorHdr,
        pbrParameters
    );

        #ifdef USE_IBL_LIGHTING
        color += imageBasedLightingStage(
            attributes.positionEC,
            inputMaterial.normalEC,
            czm_lightDirectionEC,
            lightColorHdr,
            pbrParameters
        );
        #endif
    #endif

   // ...
}
#endif

故,存在 USE_CUSTOM_LIGHT_COLOR 宏时才会使用 czm_lightColorHdr 变量作为灯光颜色,参与函数 czm_pbrLighting 计算出颜色值。

3.5. 后记

除了光颜色本身,我在着色器代码中看到被应用的还有光线的方向,主要是 czm_lightDirectionEC 等变量,光照材质仍需一个漫长的学习过程。

标签:function,从光,uniforms,czm,...,color,CesiumJS,源码,._
From: https://www.cnblogs.com/onsummer/p/17324413.html

相关文章

  • FBV和CBV的区别(源码分析)
    FBV和CBV源码分析FBV直接调用user方法执行业务代码CBV相当于在FBV上面封装了一层fromdjango.contribimportadminfromdjango.urlsimportpathfromapp01importviewsurlpatterns=[path('users/',views.UserView.as_view()),]fromdjango.viewsimport......
  • Tomcat长轮询原理与源码解析
    系列文章目录和关于我零丶长轮询的引入最近在看工作使用到的diamond配置中心原理,发现大多数配置中心在推和拉模型上做的选择出奇的一致选择了基于长轮询的拉模型基于拉模型的客户端轮询的方案客户端通过轮询方式发现服务端的配置变更事件。轮询的频率决定了动态配置获取的实......
  • vue2源码-六、根据render函数生成vnode
    根据render函数生成vnode上文介绍上面已经将模板编译成了render函数,下面就要使用render函数,从而完成渲染的操作:首先,根据render函数生成虚拟节点;然后根据虚拟节点+真实数据生成真实节点。实现mountComponent方法,完成渲染虚拟节点生成封装vm._render方法。Vue.proto......
  • DAPLink源码生成Keil工程并编译成功——笔记(实践篇)
    本文介绍使用DAP源码生产Keil工程的步骤。一、前期准备工作以下1~4为步骤:1.安装Python3(https://www.python.org/downloads/),并添加至路径PATH,此处忘截图了,总之看见pip、alluser、addtoPATH之类的就勾选。(网上也有些帖子说暂时不支持Python3要用Python2.7的,本人实测Pyt......
  • eureka源码简单剖析-服务端(服务续约接口)
           ......
  • eureka源码简单剖析-服务端(服务注册接口-作用是客户端的注册服务)
    本部分讲的是客户端的一些服务注册要注册中心,就是服务的提供者将服务注册到注册中心,方便消费者拿到需要的服务  peer是集群的模式 然后看下这个super.register(info,leaseDuration,isReplication);   日常学习使用的一般是eureka单机模式,企业使用都是eureka......
  • r0tracer 源码分析
    使用方法修改r0tracer.js文件最底部处的代码,开启某一个Hook模式。functionmain(){Java.perform(function(){console.Purple("r0tracerbegin...!")//0.增加精简模式,就是以彩虹色只显示进出函数。默认是关闭的,注释此行打开精简模式。//is......
  • eureka源码简单剖析-服务端(服务接口暴露策略)
    下面来看下服务接口暴露的策略。其中服务端使用了Jersey框架,而Jersey框架是一个发布restful风格接口的框架,类似我们使用的springmvc, 然后下面看下jersey部分    以上就是服务接口暴露的相关策略部分......
  • Visual Studio Code开发常用的工具栏选项,查看源码技巧以及【vscode常用的快捷键】
    一、开发常用的工具栏选项1、当前打开的文件快速在左侧资源树中定位:其实打开了当前的文件已经有在左侧资源树木定位了,只是颜色比较浅2、打开太多文件的时候,可以关闭3、设置查看当前类或文件的结构OUTLINE相当于idea查看当前类或接口的结构Structure二、查看......
  • OPCUA实践之winnt服务源码分享
    前言孔乙己显出极高兴的样子,将两个指头的长指甲敲着柜台,点头说:“对呀,对呀!......OPCUA,你用过么?”大家好,我是44岁的大龄程序员码农阿峰。离开上一个项目近半年了,这时当时在项目做的3个winnt服务,算是OPCUA的初次使用,代码并没有什么出彩的地方,却是能正常运行,而且工作了近1年的时......