首页 > 其他分享 >CF1477E题解

CF1477E题解

时间:2023-08-09 09:03:54浏览次数:48  
标签:max min 题解 leq Score CF1477E 数组 Delta

洛谷博客链接

此篇未投洛谷题解,因为写得太菜了qwq。

CF1477E&大户爱的送分题题解

(CF1477E为我出的校内模拟赛的一道题——《大户爱的送分题》的待修版本)

大户爱的送分题

文件名OhtoAiFirst.cpp/.in/.out,时间限制 \(1\) 秒,空间限制 \(256MB\)。

注意第一个字母是O而不是0

题目背景

大户爱去参加一个战争策略比赛,叫做阿克耐次,不过名字并不重要,重要的是她想赢得这个比赛。

题目描述

比赛规则如下:

大户爱有 \(n\) 个干员,第 \(i\) 个干员攻击力为 \(a_i\),敌方有 \(m\) 个敌人,第 \(i\) 个敌人攻击力为 \(b_i\)。

干员和敌人将按照一定顺序站上评分台(不一定是一个干员一个敌人),评分台将会为其表现评分,评分台的评分是累加的,设第 \(i\) 个人的战斗力为 \(X\),第 \(i-1\) 个人的战斗力为 \(Y\),则第 \(i\) 个人对评分台的贡献为 \(X-Y\)。设评分台当前累计评分为 \(S\),若第 \(i\) 个人对 \(S\) 贡献完毕之后 \(S<0\),则 \(S\) 将会置为 \(0\)。在此之后计算第 \(i\) 个人的表现分为当前评分台的评分。

  • 钦定第一个人的贡献就是她本身的战斗力。

  • 评分台初始分数为 \(k\)。

设大户爱的最终得分为所有干员的评分之和减去所有敌人的评分之和

求最大最终得分。

为了方便理解,设 \(c\) 数组为一个可能的站上评分台的顺序(编号从 \(1\) 开始),则计算第 \(i\) 个人的得分的代码如下:

long long GetScore(int i)
{
    long long S=k;
    for(int j=1;j<=i;j++)
    {
        S+=c[j]-c[j-1];
        if(S<0)
        S=0;
    }
    return S;
}

输入格式

第 \(1\) 行 \(3\) 个整数 \(n,m,k\)。

第 \(2\) 行 \(n\) 个整数 \(a_1\) 至 \(a_n\)。

第 \(3\) 行 \(m\) 个整数 \(b_1\) 至 \(b_m\)。

输出格式

一个整数,为最终得分的最大值。

样例输入1

3 4 5
1 2 7
3 4 5 6

样例输出1

-4

样例输入2

7 8 123458
958125 14018 215153 35195 90380 30535 204125
591020 930598 252577 333333 999942 1236 9456 82390

样例输出2

1361307

数据范围

对于 \(5 \%\) 的数据:$ 2\leq n,m \leq 5$。

对于 \(30 \%\) 的数据:\(2 \leq n,m \leq3 \times 10^3\)。

对于 \(100 \%\) 的数据:\(2 \leq n,m \leq 1 \times 10^6\),\(1 \leq a_i,b_i,k \leq 1 \times 10^6\)。

题解

Part 1

设 \(c\)​​ 数组为一种 \(a,b\) 数组的排列方案。

当计分器不重置为 \(0\)​​​ 时,每个人分数如下:

\(1:k\)

\(2:k+c_2-c_1\)

$ 3:k+c_3-c_2+c_2-c_1 =k+c_3-c_1 $

可以得到:

\[Score_i=k+c_i-c_1 \]

去掉这个限制,显然 \(Score_i\) 不会变得更劣。

那么猜想 \(Score_i\)​ 可以表示为:

\[Score_i=k+c_i-c_1+\Delta \]

考虑 \(\Delta\)​​ 是什么。

初始的时候 \(\Delta=0\)。

第一次 \(Score\) 的值小于 \(0\) 时,\(\Delta\) 为了将 \(Score\) 补到 \(0\),加上 \(0-(k+c_i-c_1)\)​​​。

第二次 \(Score\)​ 的值小于 \(0\)​​ 时,相当于:

\[Score_i=k+c_i-c_1+0-(k+c_j-c_1) \\ \because Score_i<0 \\ \therefore k+c_i-c_1+0-(k+c_j-c_1)<0 \\ k+c_i-c_1+0-k-c_j+c_1<0 \\ c_i-c_j<0 \\ c_i<c_j \]

(上式 \(i\)​ 为当前位置,\(j\)​ 为第一次 \(Score\)​ 小于 \(0\)​​ 时的位置)

显然可以得到,当 \(\Delta\)​ 被更新,当且仅当当前 \(c_i\)​ 比上一次更新时的 \(c_j\)​ 值小。

根据 \(\Delta\) 的更新原则,第 \(i\) 位的 \(\Delta=0-(k+c_{min}-c_1)\),其中 \(min\) 为 \(i\) 及之前的 \(c\)​ 的最小值的下标。​

需要注意的是只有当第一次 \(Score\) 的值小于 \(0\) 及之后 \(\Delta\) 才会有值。

为了方便后面的计算,将 \(Score_i\)​ 化成如下形式:

\[Score_i=k+c_i-c_1+\max(0,c_1-c_{min}-k)\\ \Delta=\max(0,c_1-c_{min}-k) \]

(其中 \(min\)​​ 的意义同上)

Part 2

显然如果枚举全排列过不去,开始贪心。

首先先不管 \(c_1\) 的情况,即目前 \(c_1\) 确定。

题目要求让 \(a\) 数组的 \(Score\) 和减去 \(b\) 数组的 \(Score\) 和尽量大,用 \(Score\) 计算公式的理论最大答案为多少?

显然每个 \(k+c_i-c_1\) 是不可避免的,于是问题转移到了 \(max(0,c_i-c_{min}-k)\) 上,即问题转移到了 \(\Delta\) 上。

贪心地选择,显然对于 \(a\)​ 数组的每个值,\(\Delta\)​ 要尽量大,又因为 \(c_i\)​ 和 \(k\)​ 固定,所以只能让 \(c_{min}\)​ 尽量小,即 \(c_{min}=\min(a_{min},b_{min})\)​,得到 \(Score_i=k+c_i-c_1+\max(0,c_1-\min(a_{min},b_{min})-k)\)。(这里及下文的 \(a_{min}\) 表示 \(a\) 中最小值,\(b_{min}\) 表示 \(b\)​ 中最小值)。

对于 \(b\)​ 数组的每个值,\(\Delta\)​ 要尽量小,同样因为 \(c_i\)​ 和 \(k\)​ 固定,所以只能让 \(c_{min}\)​ 尽量大。由于 \(c_{min}\)​​ 绝对单调不上升,即 \(c_{min}\leq c_i\)​,所以最劣情况是 \(c_i=c_{min}\)​,得到 \(Score_i=k+c_i-c_1+\max(0,c_1-c_{i}-k)\)。

只需要构造出一个排序方式使得满足以上条件就好了。

这里给出一种合法构造:\(c_1\) 固定,剩下的 \(b\) 数组的元素从大到小排序接到 \(c_1\) 后面,剩下的 \(a\) 数组元素从小到大排序接到 \(b\) 数组后面,此时的 \(c\) 序列是关于\(c_1\) 的最优序列。

证明:

  • 对于前半部分,也就是 \(b\) 数组部分:

    因为 \(b\) 数组递减,所以 \(c_{min}\) 只会是 \(c_1\) 和 \(c_i\) 之间的一个,所以:

    \[Score_i=k+c_i-c_1+\max(0,c_1-\min(c_1,c_i)-k) \]

    当 \(\min(c_1,c_i)=c_1\) 时,\(c_1-min(c_1,c_i)-k\leq 0\),同时 \(c_1-c_i-k \leq 0\)。即此时 $\Delta $ 的值只能为 \(0\),所以可以把 \(min(c_1,c_i)\) 化掉,即:

    \[Score_i=k+c_i-c_1+\max(0,c_1-c_i-k) \]

    成立。

  • 对于后半部分,也就是 \(a\) 数组的部分:

    因为 \(a\) 数组递增,所以对于后半部分的每一个位置,\(c_{min}\) 都是 \(\min(a_{min},b_{min})\)​,即:

    \[Score_i=k+c_i-c_1+\max(0,c_1-\min(a_{min},b_{min})-k) \]

    成立。

Part 3

式子合并。

对于固定的 \(c_1\):

设 \(c_1=t\)

  • 若 \(c_1\) 选的 \(a\) 的值,将其从 \(a\) 数组中清除后:

\[ans=k+\sum_{i=1}^{n-1} k+a_i-t+\max(0,t-\min(a_{min},b_{min})-k)-\sum_{i=1}^m k+b_i-t+\max(0,t-b_i-k) \\ =(n-m)k+(m-n+1)t+(n-1)\max(0,t-\min(a_{min},b_{min})-k)+\sum_{i=1}^{n-1}a_i-\sum_{i=1}^{m}b_i+\max(0,t-b_i-k) \\ \]

前面一坨是 \(O(1)\) 的,由于 \(b\) 单调递增,最后一个 \(\max(0,t-b_i-k)\) 可以二分枚举断点。

  • 若 \(c_1\) 选的 \(b\) 的值,同上:

\[ans=-k+\sum_{i=1}^{n} k+a_i-t+\max(0,t-\min(a_{min},b_{min})-k)-\sum_{i=1}^{m-1} k+b_i-t+\max(0,t-b_i-k) \\ =(n-m)k+(m-n-1)t+n \times \max(0,t-\min(a_{min},b_{min})-k)+\sum_{i=1}^{n}a_i-\sum_{i=1}^{m-1}b_i+\max(0,t-b_i-k) \]

CF1477E

(就是可以修改 \(k\),\(a\),\(b\) 的《大户爱的送分题》)

Part 4

玄学的一步。

对了很多组拍,发现答案的 \(c_1\) 取值大都集中在 \(a_{min}\),\(b_{min}\),\(b_{max}\) 处,但是又有些时候是没什么规律的 ,然后看了一眼别人题解,说的是 \(c_1\) 还可以为 \(b\) 中次大值加 \(K\) 在 \(a\) 的前驱和后缀(这个题解) 所以相当于只需要算这 \(5\) 个点的值就行了。

前缀和可用树状数组维护。

二分断点可用平衡树维护,其实手写平衡树很方便,set 不能查排名就很难搞。

注意如果 \(c_1\) 为 \(a_{min}\) 或 \(b_{min}\) 则算式里的 \(a_{min}\) 或 \(b_{min}\) 是指其次小值。.

更改数值就是平衡树上删除原数值再插入新数值,再更改树状数组单点值就好。

附:

我只过了我自己出的不带修版本,CF1477E 因为要写平衡树所以没来得及做,所以 Part 4 不保证是对的,因为是看的别人的题解。只能说大概率是对的。

标签:max,min,题解,leq,Score,CF1477E,数组,Delta
From: https://www.cnblogs.com/0htoAi/p/17615914.html

相关文章

  • CF1030F题解
    CF1030F题解传送门 更好的阅读体验简化题意:有$n$个小球,每个小球在位置$a_i$,移动一格的代价是$w_i$,有两种操作,一种是将$w_x$改成$y$,一种是查询$\min\limits_{x=1}^n\{\sum\limits_{i=l}^rw_i\times(|a_x-a_i|+|x-i|)\}$。思路很好的线段树二分练手题。对于每......
  • CF1239E 题解
    CF1239E给定\(2n\)个数,将其重排成\(2\timesn\)的矩阵,最小化:从\((1,1)\)走到\((2,n)\),只可向右下走的所有方案中,途径所有数的和的最大值。\(n\le25,|V|\le5\times10^4\)。考场上有个\(n\le10\)的包,分值高达\(40\)。注意到\(\binom{20}{10}\approx10^5\)可枚......
  • 2023年 8月7日普及组南外集训题解
    A国家集训队题解注意数据已经是有序的,我还搞了个排序,我是智障所以只需要将第5个人到第16个人的成绩都预设成300,再把前4个人的成绩都预设成0,再看有没有人能超过第4个人就行了ac代码#include<iostream>usingnamespacestd;constintN=20;inta[N],ans=4;intmain(......
  • 2023年百度之星程序设计竞赛初赛1题解
    每次出题都出其不意---->群友蓝桥国三ac一道题根据官方的视频题解整理依据难度的划分第五题:促销糖果 分析:从答案出发想吃K个糖果,必定有k个糖纸,考虑换购,则有一张糖纸是不可以换的(因为你必须至少要买一颗糖果)则换购的数量为(k-1)/减去换购的糖果则是买的糖果packageLi2209;i......
  • CodeForces CF1846G 题解
    CodeForcesCF1846G题解CodeForces题目链接洛谷题目链接标准答案是状压之后,转化成Dijkstra算法跑最短路。我这里提供一个不一样的思路。题意简述主人公得了病,有部分类型的症状。所有类型症状共有\(n\)种,用长为\(n\)的01串表示是否有那种症状。共有\(m\)种药,吃......
  • 【BZOJ 3364】Distance Queries 距离咨询 题解
    原题简化题意:有一棵\(n\)个点的树,\(q\)组询问,每次询问回答两点间的距离。令\(dis[i][j]\)表示\(i\)到\(j\)的距离,根节点为\(rt\),则有\(dis[i][j]=dis[rt][i]+dis[rt][j]-2×dis[rt][lca(i,j)]\),按照题意打即可。#include<bits/stdc++.h>usingnamespacestd;#d......
  • Edge Drop传输缓慢的问题解决
    首先在移动端上传一张图片1.图片上传失败上传失败就没得救,网络真的不好,或者微软的服务器暂时被迫挂了。2.图片上传成功网页就会弹出消息......
  • RTSP流媒体服务器LntonNVR(源码版)视频平台通过级联到上级云服务器但视频无法播放的问题
    在经过多次的测试后,官方发布的版本可以正常级联。在实际使用过程中,有用户反馈LntonNVR通过国标GB28181协议级联到上级云服务器平台后,出现了上级平台无法播放的问题,需要我们技术人员协助进行排查。从上图我们可以看出,用户的云服务器平台显示是正常的,但是实际点击播放却存在一些问题......
  • 国标GB28181视频平台LntonGBS(源码版)国标平台大量通道接入后,创建角色接口不响应的问题
    国标GB28181协议视频平台LntonGBS是基于国标GB28181协议的视频云服务平台,支持多路设备同时接入,并对多平台、多终端分发出RTSP、RTMP、FLV、HLS、WebRTC等格式的视频流。平台可提供视频监控直播、云端录像、云存储、检索回放、智能告警、语音对讲、平台级联等功能,在视频能力上,GB2818......
  • 国标GB28181视频平台LntonGBS(源码版)国标视频平台内存错误导致崩溃的问题解决方案
    LntonGBS国标视频云服务通过支持国标GB28181协议,实现了设备接入、实时监控直播、录像、语音对讲、云存储、告警、级联等功能。同时,它还支持将接入的视频流以多种格式(包括RTSP、RTMP、FLV、HLS、WebRTC)进行全终端、全平台分发,实现了无插件播放在Web浏览器、手机浏览器、微信端、PC客......