总结: [01背包] 空间优化后内层循环为啥是逆序的?
首先,这是一个困扰了不少人的问题,虽然网上有挺多的解释,但是有的想起来比较费劲,于是乎,就有了这篇题解
题目分析
- 首先,01背包问题是一个非常非常非常经典的动态规划问题(后文简称“动规”或“dp”)。
- 因为百度百科上的题目分析比较详细 (我比较懒),所以就拿来做参考了
01背包是在N件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2至Wn,与之相对应的价值为V1,V2至Vn。01背包是背包问题中最简单的问题。01背包的约束条件是给定几种物品,每种物品有且只有一个,并且有权值和体积两个属性。
(摘自:百度百科)
正文
1. 首先,我们想要知道优化后的思路,就得先来看原版的↓
大体思路:以“第i件物品在背包体积为j时的最大价值”循环递推出“N件物品取若干件放在空间为W的背包里”(即dp[N][W])的最大价值。
话不多说,直接上代码↓
1 #include<bits/stdc++.h> 2 using namespace std; 3 int dp[110][10100]; 4 int w[110], v[110]; 5 int N, W; 6 int main(){ 7 cin >> N >> W ; 8 for(int i=1;i<=N;i++)cin>>w[i]>>v[i]; 9 memset(dp, 0, sizeof(dp)); 10 11 for(int i=1;i<=N;i++){ 12 for(int j=1;j<=W;j++){ 13 if(j < w[i]) dp[i][j] = dp[i-1][j]; 14 //如果w[i]>j,第i个物品一定不能选择 15 else{ 16 //否则在第i个物品选与不选中选择较大的 17 dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i]); 18 } 19 } 20 } 21 cout<<"max="<<dp[N][W]; 22 return 0; 23 }
2. 现在,我们再来看优化过的(优化空间)
那么,我们为什么可以优化呢?
我们发现,每一行的数据都只与上一行有关,所以就可以把二维的dp数组变成一维的“滚动数组”。
只看文字可能不太好理解,于是贴心的我就画了个表↓
0 | 1 | 2 | 3 | |
0 | y | |||
1 | x | |||
2 | ||||
3 |
(行为i,列为j)结合上面的代码不难看出, x格的值只与
dp[i-1][j]或dp[i-1][j-w[i]]+v[i]
即y格或与y格前面同一行的其他格有关(划重点)
所以,当dp数组变为一维时,x格前面同一行的其他格都已经把原本y那一行的覆盖掉了,而x格从前面取的数值就可能会是更新过的,造成答案错误。
其他格同理,而倒序则不会覆盖掉前面的,所以里层循环(即j的循环)要是倒序的。
道理都讲完了,为了防止有人还是懵的,这里附上一篇用数据验证的文章↓
https://blog.csdn.net/xiajiawei0206/article/details/19933781
顺带说一句,如果优化空间后的里层循环是正着的,那么表示一个物品被重复取了,
所以,完全背包问题刚好可以用这种解法。
写在最后
最后,附上优化过的代码↓
对不起,2023年3月27日19:42:23复习DP的时候才发现放成完全背包的了。以下是正确代码↓
1 #include<bits/stdc++.h> 2 using namespace std; 3 int main(){ 4 int n; 5 cin >> n; 6 int ww[n+4], v[n+4]; 7 for(int i=1;i<=n;i++) cin >> ww[i] >> v[i]; 8 int W; 9 cin >> W; 10 int dp[W+4]; 11 memset(dp, 0, sizeof(dp)); 12 for(int i=1;i<=n;i++){ 13 for(int j=W;j>=1;j--){ 14 if(j >= ww[i]){ 15 dp[j] = max(dp[j], dp[j-ww[i]]+v[i]); 16 } 17 } 18 } 19 cout << dp[W]; 20 return 0; 21 }
完全背包
- 既然写错了,那就将错就错,讲下完全背包吧
(先放个代码,下次在写)
1 #include<bits/stdc++.h> 2 using namespace std; 3 int dp[204]; 4 int w[32], v[32]; 5 int N, W; 6 int main(){ 7 cin>>W>>N; 8 for(int i=1;i<=N;i++)cin>>w[i]>>v[i]; 9 memset(dp, 0, sizeof(dp)); 10 for(int i=1;i<=N;i++){ 11 for(int j=w[i];j<=W;j++){ 12 dp[j] = max(dp[j], dp[j-w[i]]+v[i]); 13 } 14 } 15 cout<<"max="<<dp[W]; 16 return 0; 17 }
感谢 提供参考:https://blog.csdn.net/xiajiawei0206/article/details/19933781
标签:01,int,内层,ww,背包,优化,dp,逆序 From: https://www.cnblogs.com/life-like-VEX/p/17607636.html