对于正定对称矩阵\(\mathbf{H}\),可以分解为\(\mathbf{H}=\mathbf{XX}^T\),其中\(\mathbf{X}\)是下三角矩阵。这个分解方法就是cholesky分解,pytorch对应的函数是torch.linalg.cholesky
使用\(\mathbf{X}\)可以求出\(\mathbf{H}^{-1}\),pytorch对应的函数是torch.cholesky_inverse
计算cholesky分解,举个官方文档中的例子:
In [48]: a = torch.randn(3, 3)
In [49]: a = torch.mm(a, a.t()) + 1e-05 * torch.eye(3)
In [50]: a
Out[50]:
tensor([[ 1.4079, -0.1658, -0.2116],
[-0.1658, 3.1347, 0.9066],
[-0.2116, 0.9066, 0.4598]])
In [51]: u = torch.linalg.cholesky(a)
In [52]: u
Out[52]:
tensor([[ 1.1865, 0.0000, 0.0000],
[-0.1398, 1.7650, 0.0000],
[-0.1783, 0.4995, 0.4224]])
In [53]: torch.mm(u, u.t())
Out[53]:
tensor([[ 1.4079, -0.1658, -0.2116],
[-0.1658, 3.1347, 0.9066],
[-0.2116, 0.9066, 0.4598]])
In [54]: v = torch.linalg.cholesky(a, upper=True)
In [55]: v
Out[55]:
tensor([[ 1.1865, -0.1398, -0.1783],
[ 0.0000, 1.7650, 0.4995],
[ 0.0000, 0.0000, 0.4224]])
In [56]: torch.mm(v.t(), v)
Out[56]:
tensor([[ 1.4079, -0.1658, -0.2116],
[-0.1658, 3.1347, 0.9066],
[-0.2116, 0.9066, 0.4598]])
In [57]:
可以看到,a是个正定对称矩阵,分解可以得到下三角矩阵\(u\)或者上三角矩阵\(v\),使得\(uu^T=a\)或者\(v^Tv=a\)
实际上,观察可以知道,\(v^T=u\)
再来计算逆
In [77]: a_inverse = torch.cholesky_inverse(u)
In [78]: a_inverse
Out[78]:
tensor([[ 0.7914, -0.1477, 0.6553],
[-0.1477, 0.7699, -1.5859],
[ 0.6553, -1.5859, 5.6035]])
In [79]: a.inverse()
Out[79]:
tensor([[ 0.7914, -0.1477, 0.6553],
[-0.1477, 0.7699, -1.5859],
[ 0.6553, -1.5859, 5.6035]])
验证一下是不是逆矩阵:
In [81]: a @ a.inverse()
Out[81]:
tensor([[1.0000e+00, 0.0000e+00, 0.0000e+00],
[8.9407e-08, 1.0000e+00, 4.7684e-07],
[0.0000e+00, 5.9605e-08, 1.0000e+00]])
In [82]: a @ a_inverse
Out[82]:
tensor([[ 1.0000e+00, 0.0000e+00, 0.0000e+00],
[ 5.9605e-08, 1.0000e+00, 4.7684e-07],
[-1.4901e-08, 1.1921e-07, 1.0000e+00]])
In [83]: (a @ a_inverse).int()
Out[83]:
tensor([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]], dtype=torch.int32)
这里@是矩阵乘法运算符,起始得到的是单位矩阵,因为浮点数表示精度的问题,有的数字不是确切为0,而是接近0的一个很小的数字,转换为int可以更清晰地验证。
标签:求逆,cholesky,tensor,torch,00,分解,0.0000,Out From: https://www.cnblogs.com/wangbingbing/p/17535540.html