首页 > 其他分享 >02修剪标准&&方法

02修剪标准&&方法

时间:2023-07-01 16:45:13浏览次数:52  
标签:02 修剪 nn self torch train && model data

2.1修剪标准

2.1.1基于权重大小的修剪标准

参考上一节,对权重做绝对值按大小修剪,或者做L1/L2范数来进行修剪

2.1.2基于梯度幅度来修剪

基于前面可知,我们按照值的大小来修剪,把值小的裁剪掉了,或者说某个权重在训练过程中一直不变,直观上感觉没有那么重要。但其实这样是不对的,从梯度上来说,该权值可能初始就很低(接近合适值),所以他的更新值就会很小,而不能认为他变动小就不重要。因此我们需要将权重大小和梯度大小结合考虑,进行裁剪。最简单的一种方式是考虑乘积。

下面这段代码可以应用于硕士毕业论文中,按照你的想法来剪枝

import numpy as np
import torch

def prune_by_gradient_weight_product(model, pruning_rate):
    grad_weight_product_list = []
    for name, param in model.named_parameters():
        if 'weight' in name:
            # 计算梯度与权重的乘积
            grad_weight_product = torch.abs(param.grad * param.data)
            grad_weight_product_list.append(grad_weight_product)

    # 将所有的乘积值合并到一个张量中
    all_product_values = torch.cat([torch.flatten(x) for x in grad_weight_product_list])
    # 计算需要修剪的阈值
    threshold = np.percentile(all_product_values.cpu().detach().numpy(), pruning_rate)

    # 对权重进行修剪
    for name, param in model.named_parameters():
        if 'weight' in name:
            # 创建一个掩码,表示哪些权重应该保留
            mask = torch.where(torch.abs(param.grad * param.data) >= threshold, 1, 0)
            # 应用掩码
            param.data *= mask.float()
pruning_rate = 50
#一个全连接层,输入10的向量输出5的向量,然后是激活层,然后又是全连接层输入5的向量输出1的向量
model = torch.nn.Sequential(torch.nn.Linear(10, 5), torch.nn.ReLU(), torch.nn.Linear(5, 1))
input_tensor = torch.randn(1, 10)  # 创建一个随机输入张量
#output_tensor就是传入input_tensor,跑一个最小的前向和反向传播
output_tensor = model(input_tensor)  # 前向传递
loss = torch.sum(output_tensor)  # 定义一个虚拟损失
loss.backward()                  # 执行反向传递以计算梯度
prune_by_gradient_weight_product(model, pruning_rate)  # 对模型进行修剪

2.2修剪方法

2.2.1修剪框架

2015年提出了经典框架,训练-剪枝-微调

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import numpy as np
# 1. 训练基础的大网络
#这里实现了一个bigmodel只构建了三个全连接层
class BigModel(nn.Module):
    def __init__(self):
        super(BigModel, self).__init__()
        self.fc1 = nn.Linear(784, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, 10)
    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 准备MNIST数据集
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST('./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)

def train(model, dataloader, criterion, optimizer, device='cpu', num_epochs=10):
    model.train()
    model.to(device)

    for epoch in range(num_epochs):
        running_loss = 0.0
        for batch_idx, (inputs, targets) in enumerate(dataloader):
            inputs, targets = inputs.to(device), targets.to(device)

            # 前向传播
            outputs = model(inputs.view(inputs.size(0), -1))
            loss = criterion(outputs, targets)

            # 反向传播
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            running_loss += loss.item()

        print(f"Epoch {epoch + 1}, Loss: {running_loss / len(dataloader)}")

    return model

big_model = BigModel()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(big_model.parameters(), lr=1e-3)
big_model = train(big_model, train_loader, criterion, optimizer, device='cuda', num_epochs=2)

# 保存训练好的大网络
torch.save(big_model.state_dict(), "big_model.pth")

# 2. 修剪大网络为小网络  <==================================
def prune_network(model, pruning_rate=0.5, method="global"):
    for name, param in model.named_parameters():
        if "weight" in name:
            tensor = param.data.cpu().numpy()
            if method == "global":
                threshold = np.percentile(abs(tensor), pruning_rate * 100)
            else:  # local pruning
                threshold = np.percentile(abs(tensor), pruning_rate * 100, axis=1, keepdims=True)
            mask = abs(tensor) > threshold
            param.data = torch.FloatTensor(tensor * mask.astype(float)).to(param.device)


big_model.load_state_dict(torch.load("big_model.pth"))
prune_network(big_model, pruning_rate=0.5, method="global") # <==================================

# 保存修剪后的模型
torch.save(big_model.state_dict(), "pruned_model.pth")

# 3. 以低的学习率做微调
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(big_model.parameters(), lr=1e-4) # <==================================
finetuned_model = train(big_model, train_loader, criterion, optimizer, device='cuda', num_epochs=10)

# 保存微调后的模型
torch.save(finetuned_model.state_dict(), "finetuned_pruned_model.pth")


# Epoch 1, Loss: 0.2022465198550985
# Epoch 2, Loss: 0.08503768096334421
# Epoch 1, Loss: 0.03288614955859935
# Epoch 2, Loss: 0.021574671817958347
# Epoch 3, Loss: 0.015933904873507806

2018年提出了边训练边剪枝,在每完成一个epoch之后就进行剪枝,剪枝只是置0,下一次依然会更新

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import numpy as np

class BigModel(nn.Module):
    def __init__(self):
        super(BigModel, self).__init__()
        self.fc1 = nn.Linear(784, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, 10)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return x

transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST('./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)

def prune_network(model, pruning_rate=0.5, method="global"):
    for name, param in model.named_parameters():
        if "weight" in name:
            tensor = param.data.cpu().numpy()
            if method == "global":
                threshold = np.percentile(abs(tensor), pruning_rate * 100)
            else:  # local pruning
                threshold = np.percentile(abs(tensor), pruning_rate * 100, axis=1, keepdims=True)
            mask = abs(tensor) > threshold
            param.data = torch.FloatTensor(tensor * mask.astype(float)).to(param.device)

def train_with_pruning(model, dataloader, criterion, optimizer, device='cpu', num_epochs=10, pruning_rate=0.5):
    model.train()
    model.to(device)

    for epoch in range(num_epochs):
        running_loss = 0.0
        for batch_idx, (inputs, targets) in enumerate(dataloader):
            inputs, targets = inputs.to(device), targets.to(device)

            # 前向传播
            outputs = model(inputs.view(inputs.size(0), -1))
            loss = criterion(outputs, targets)

            # 反向传播
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            running_loss += loss.item()

        print(f"Epoch {epoch + 1}, Loss: {running_loss / len(dataloader)}")

        # 在每个 epoch 结束后进行剪枝
        prune_network(model, pruning_rate, method="global") # <================================== just prune the weights ot 0 but still allow them to grow back by optimizer.step()

    return model

big_model = BigModel()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(big_model.parameters(), lr=1e-3)
big_model = train_with_pruning(big_model, train_loader, criterion, optimizer, device='cuda', num_epochs=10, pruning_rate=0.1)

# 保存训练好的模型
torch.save(big_model.state_dict(), "trained_with_pruning_model.pth")

直接remove剪枝,优点是可以减少模型的计算量和内存使用。可以通过减少网络容量来防止过拟合。

缺点是可能会降低网络的表示能力,导致性能下降。需要对网络结构进行改变,这可能会增加实现和微调的复杂性

# train phase

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import numpy as np

# 1. Train a large base network
class BigModel(nn.Module):
    def __init__(self):
        super(BigModel, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(32, 16, kernel_size=3, padding=1)
        self.fc = nn.Linear(16 * 28 * 28, 10)

        # Initialize l1norm as a parameter and register as buffer
        self.conv1_l1norm = nn.Parameter(torch.Tensor(32), requires_grad=False)
        self.conv2_l1norm = nn.Parameter(torch.Tensor(16), requires_grad=False)
        self.register_buffer('conv1_l1norm_buffer', self.conv1_l1norm)
        self.register_buffer('conv2_l1norm_buffer', self.conv2_l1norm)
        

    def forward(self, x):
        x = torch.relu(self.conv1(x))
        self.conv1_l1norm.data = torch.sum(torch.abs(self.conv1.weight.data), dim=(1, 2, 3))
        
        x = torch.relu(self.conv2(x))
        self.conv2_l1norm.data = torch.sum(torch.abs(self.conv2.weight.data), dim=(1, 2, 3))
        
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x

# Training function
def train(model, dataloader, criterion, optimizer, device='gpu', num_epochs=10):
    model.train()
    model.to(device)

    for epoch in range(num_epochs):
        running_loss = 0.0
        for batch_idx, (inputs, targets) in enumerate(dataloader):
            inputs, targets = inputs.to(device), targets.to(device)

            # Forward propagation
            outputs = model(inputs)
            loss = criterion(outputs, targets)

            # Backpropagation
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            running_loss += loss.item()
            # print(f"Loss: {running_loss / len(dataloader)}")
            
        print(f"Epoch {epoch + 1}, Loss: {running_loss / len(dataloader)}")

    return model


if __name__ == "__main__":
    # Prepare the MNIST dataset
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
    train_dataset = datasets.MNIST('./data', train=True, download=True, transform=transform)
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)

    big_model = BigModel()
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(big_model.parameters(), lr=1e-3)
    big_model = train(big_model, train_loader, criterion, optimizer, device='cuda', num_epochs=3)

    # Save the trained big network
    torch.save(big_model.state_dict(), "big_model.pth")
    
    # Set the input shape of the model
    dummy_input = torch.randn(1, 1, 28, 28).to("cuda")

    # Export the model to ONNX format
    torch.onnx.export(big_model, dummy_input, "big_model.onnx")

# (/home/coeyliang/miniconda3) coeyliang_pruning> python train.py 
# Epoch 1, Loss: 0.14482067066501939
# Epoch 2, Loss: 0.05070804020739657
# Epoch 3, Loss: 0.03378467213614771

剪枝部分,下面这份代码,对conv1修剪第一个通道,对conv2修剪第2个通道

#初始化一个空列表,用于存储二维卷积的层的L1范数
l1norms_for_local_threshold = []
for name, m in model.name_modules:
    if isinstance(m, nn.Conv2d):
        #为当前模块的L1范数创建一个名称
        l1norm_buffer_name = f"{name}_l1norm_buffer"
        #使用getattr函数从模型中获取该名称对应的属性。这个属性应该是当前模块的L1范数
        l1norm = getattr(model, l1norm_buffer_name)
        
        l1norms_for_local_threshold.append(l1norm)
#排序并且只取value,然后确定阈值,这里的0.5用于确定阈值
T_conv1 = torch.sort(l1norms_for_local_threshold[0])[0][int(len(l1norms_for_local_threshold[0]) * 0.5)]
#下面就是剪掉
#先取出来,方便后面操作
conv1 = model.conv1 #[32*1*3*3]
conv2 = model.conv2 #[16*32*3*3]
conv1_l1norm_buffer = model.conv1_l1norm_buffer
conv2_l1norm_buffer = model.conv2_l1norm_buffer
#比T_conv1大的留下
keep_idxs = torch.where(conv1_l1norm_buffer >= T_conv1)[0]
k = len(keep_idxs)

conv1.weight.data = conv1.weight.data[keep_idxs]
conv1.bias.data = conv1.bias.data[keep_idxs]
conv1_l1norm_buffer.data = conv1_l1norm_buffer.data[keep_idxs]
conv1.out_channels = k

_, keep_idxs = torch.topk(conv2_l1norm_buffer, k)

#注意这里要塞到第2个通道,所以是[:, keep_idxs]
conv2.weight.data = conv2.weight.data[:,keep_idxs]
conv2_l1norm_buffer.data = conv2_l1norm_buffer.data[keep_idxs]
conv2.in_channels = k

torch.save(model.state_dict(), "pruned_model.pth")
dummy_input = torch.randn(1, 1, 28, 28)
torch.onnx.export(model, dummy_input, "pruned_model.onnx")

#后面是finetune略

2.3.1稀疏训练

2018年提出,步骤分为

  • 初始化一个带有随机mask的网络
  • 训练这个pruned network 一个epoch
  • 去掉一些权重较小的一些weights(或者不满足自定义条件的weights)
  • 重新生成(regrow)同样数量的random weights

如下,我们拿到一个网络,考虑如何将其变成一个稀疏训练。

# raw net
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader


# Define the network architecture
class SparseNet(nn.Module):
    def __init__(self):
        super(SparseNet, self).__init__()
        self.fc1 = nn.Linear(784, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = x.view(-1, 784)
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x


# Load MNIST dataset
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST('./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)

# Initialize the network, loss function, and optimizer
sparsity_rate = 0.5
model = SparseNet()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

# Training loop
n_epochs = 10
for epoch in range(n_epochs):
    running_loss = 0.0
    for batch_idx, (inputs, targets) in enumerate(train_loader):
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, targets)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        
        # print(f"Loss: {running_loss / (batch_idx+1)}")
    
    print(f"Epoch {epoch+1}/{n_epochs}, Loss: {running_loss / (batch_idx+1)}")

下图展示了稀疏训练,选出部分将其置0(对应图上红色),绿色是保留项(这只是前人的设计,后续有更好的)

下面是2018年这篇文章的实现

# sparse net
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

# Define the network architecture
class SparseNet(nn.Module):
    def __init__(self, sparsity_rate, mutation_rate = 0.5):
        super(SparseNet, self).__init__()
        self.fc1 = nn.Linear(784, 128)
        self.fc2 = nn.Linear(128, 10)
        self.sparsity_rate = sparsity_rate
        self.mutation_rate = mutation_rate
        self.initialize_masks() # <== 1.initialize a network with random mask
   
    def forward(self, x):
        x = x.view(-1, 784)
        x = x @ (self.fc1.weight * self.mask1.to(x.device)).T + self.fc1.bias
        x = torch.relu(x)
        x = x @ (self.fc2.weight * self.mask2.to(x.device)).T + self.fc2.bias
        return x

    def initialize_masks(self):
        self.mask1 = self.create_mask(self.fc1.weight, self.sparsity_rate)
        self.mask2 = self.create_mask(self.fc2.weight, self.sparsity_rate)

    def create_mask(self, weight, sparsity_rate):
        k = int(sparsity_rate * weight.numel())
        _, indices = torch.topk(weight.abs().view(-1), k, largest=False)
        mask = torch.ones_like(weight, dtype=bool)
        mask.view(-1)[indices] = False
        return mask  # <== 1.initialize a network with random mask

    def update_masks(self):
        self.mask1 = self.mutate_mask(self.fc1.weight, self.mask1, self.mutation_rate)
        self.mask2 = self.mutate_mask(self.fc2.weight, self.mask2, self.mutation_rate)
        
    def mutate_mask(self, weight, mask, mutation_rate=0.5): # weight and mask: 2d shape
        # Find the number of elements in the mask that are True
        num_true = torch.count_nonzero(mask)

        # Compute the number of elements to mutate
        mutate_num = int(mutation_rate * num_true)
        
        # 3) pruning a certain amount of weights of lower magnitude
        true_indices_2d = torch.where(mask == True) # index the 2d mask where is true
        true_element_1d_idx_prune = torch.topk(weight[true_indices_2d], mutate_num, largest=False)[1]
        
        for i in true_element_1d_idx_prune:
            mask[true_indices_2d[0][i], true_indices_2d[1][i]] = False
        
        # 4) regrowing the same amount of random weights.
        # Get the indices of the False elements in the mask
        false_indices = torch.nonzero(~mask)

        # Randomly select n indices from the false_indices tensor
        random_indices = torch.randperm(false_indices.shape[0])[:mutate_num]

        # the elemnt to be regrow
        regrow_indices = false_indices[random_indices]
        for regrow_idx in regrow_indices:
            mask[tuple(regrow_idx)] = True
        
        return mask


# Set the device to CUDA if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load MNIST dataset and move to the device
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])

train_dataset = datasets.MNIST('./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)

sparsity_rate = 0.5
model = SparseNet(sparsity_rate).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

n_epochs = 10
for epoch in range(n_epochs):
    running_loss = 0.0
    for batch_idx, (inputs, targets) in enumerate(train_loader):
        # Move the data to the device
        inputs, targets = inputs.to(device), targets.to(device)

        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, targets)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        # print(f"Loss: {running_loss / (batch_idx+1)}")

    # Update masks
    model.update_masks() # generate a new mask based on the updated weights

    print(f"Epoch {epoch+1}/{n_epochs}, Loss: {running_loss / (batch_idx+1)}")

标签:02,修剪,nn,self,torch,train,&&,model,data
From: https://www.cnblogs.com/125418a/p/17519490.html

相关文章

  • 【哈佛cs50 2022】lab3 & problemSet3【ing】
    (1)lab3如何测试每个代码运行所需要的时间?time./sort1sorted5000.txt sort1sort2sort3sorted5000.txt0.037s0.020s0.045ssorted10000.txt0.058s0.050s0.151ssorted50000.txt1.244s2.238s5.637sreversed5000.txt0.088s0.026s0.045srever......
  • 【题解】#119. 最大整数 题解(2023-07-01更新)
    #119.最大整数题解题目传送门更新日志2023-05-2617:20文章完成2023-05-3015:22文章审核通过2023-07-0116:04修改了代码题目知识点字符串+贪心题意说明设有n个正整数($n<20$),将它们连接成一排,组成一个最大的多位整数。(题目简介明了,一看就是出题人懒得写题目背景)......
  • (2023.7.1)DPAA手册熟悉
    //路径https://www.nxp.com.cn/design/documentation:DOCUMENTATION#/collection=documents&start=0&max=12&language=cn&query=type%3E%3E%E5%BA%94%E7%94%A8%E7%AC%94%E8%AE%B0&sorting=ModifiedDate.desc&keyword=dpaaAN13329:  ......
  • 2023暑假软件工程打卡第一周
    一、学习使用cmd命令窗口1、打开cmd①、按下win+R键,在计算机中会出现运行窗口。 ②、输入cmd,点击回车,进入cmd命令窗口。 2、输入cmd命令①、常见的cmd命令Ⅰ、盘符加冒号。  因为默认为再C盘路径下操作,如果我们输入盘符+冒号后进行回车,我们就可以转换为在此盘符下操......
  • 【题解】P8741 [蓝桥杯 2021 省 B] 填空问题 题解
    P8741[蓝桥杯2021省B]填空问题题解题目传送门欢迎大家指出错误并联系这个蒟蒻更新日志2023-05-0923:19文章完成2023-05-0923:20通过审核2023-06-2021:03优化了文章代码格式试题A:空间【解析】本题考察计算机存储的基础知识,只要掌握空间存储的换算方法,就能......
  • 【置顶】FZQOJ题解集(2023-07-01更新)
    #68.「NOIP2004」津津的储蓄计划题解题目传送门欢迎大家指出错误并联系这个蒟蒻更新日志2023-02-0117:20文章完成2023-02-0316:09文章审核通过2023-02-0422:15修改了注释2023-05-2709:27修改了$\LaTeX$2023-07-0115:45修改了代码题目知识点模拟题目分析......
  • 【置顶】luogu题解集(2023-07-01更新)
    P8679[蓝桥杯2019省B]填空问题题解题目传送门欢迎大家指出错误并联系这个蒟蒻更新日志2023-05-2521:02文章完成2023-05-2711:34文章通过审核2023-06-2021:03优化了文章代码格式试题A:组队【解析】本题是一道经典的DFS搜索题,每次对各号位的选手进行DFS,......
  • 【题解】#373. 「USACO1.1」Friday the Thirteenth 题解(2023-07-01更新)
    #373.「USACO1.1」FridaytheThirteenth题解题目传送门欢迎大家指出错误并联系这个蒟蒻更新日志2023-02-0117:20文章完成2023-02-0318:50文章审核通过2023-02-0319:17修改了注释2023-05-2520:25修改了$\LaTeX$2023-05-2520:32再次修改了$\LaTeX$,感谢ACRU......
  • 算法学习day04链表part02-24、19、0207、142
    packageSecondBrush.LinkedList.LL1;/***24.两两交换链表中的节点**/publicclassSwapNodesInPairs_24{publicListNodeswapPairs(ListNodehead){ListNodedummyhead=newListNode(-1);dummyhead.next=head;ListNodecur......
  • 【题解】#105. 「USACO1.3」Ski Course Design 题解(2023-07-01更新)
    #105.「USACO1.3」SkiCourseDesign题解题目传送门欢迎大家指出错误并联系这个蒟蒻更新日志2023-02-0117:20文章完成2023-02-0316:09文章审核通过2023-02-0422:15修改了注释2023-05-1621:44修改了$\LaTeX$2023-07-0115:59修改了代码题目知识点模拟+搜索......