首页 > 其他分享 >变分自编码器(VAE)公式推导

变分自编码器(VAE)公式推导

时间:2023-07-01 14:13:13浏览次数:59  
标签:编码器 frac log boldsymbol 变分 VAE mu sigma mathrm

论文原文:Auto-Encoding Variational Bayes [OpenReview (ICLR 2014) | arXiv]

本文记录了我在学习 VAE 过程中的一些公式推导和思考。如果你希望从头开始学习 VAE,建议先看一下苏剑林的博客(本文末尾有链接)。

VAE 的整体框架

VAE 认为,随机变量 \(\boldsymbol{x} \sim p(\boldsymbol{x})\) 由两个随机过程得到:

  1. 根据先验分布 \(p(\boldsymbol{z})\) 生成隐变量 \(\boldsymbol{z}\)。
  2. 根据条件分布 \(p(\boldsymbol{x} | \boldsymbol{z})\) 由 \(\boldsymbol{z}\) 得到 \(\boldsymbol{x}\)。

于是 \(p(\boldsymbol{x}, \boldsymbol{z}) = p(\boldsymbol{z})p(\boldsymbol{x} | \boldsymbol{z})\) 就是我们所需要的生成模型。

一种朴素的想法是:先用随机数生成器生成隐变量 \(\boldsymbol{z}\),然后用 \(p(\boldsymbol{x} | \boldsymbol{z})\) 从 \(\boldsymbol{z}\) 中生成出(或者说重构出) \(\boldsymbol{x}\),通过最小化重构损失来训练模型。这个想法的问题在于:我们无法找到生成的样本与原始样本之间的对应关系,重构损失算不了,无法训练。

VAE 的做法是引入后验分布 \(p(\boldsymbol{z} | \boldsymbol{x})\),训练过程变为:

  1. 采样一批原始样本 \(\boldsymbol{x}\)。
  2. 用 \(p(\boldsymbol{z} | \boldsymbol{x})\) 获得每个样本 \(\boldsymbol{x}\) 对应的隐变量 \(\boldsymbol{z}\)。
  3. 用 \(p(\boldsymbol{x} | \boldsymbol{z})\) 从隐变量 \(\boldsymbol{z}\) 中重构出 \(\boldsymbol{x}\),通过最小化重构损失来训练模型。

从这个角度来看,\(p(\boldsymbol{z} | \boldsymbol{x})\) 相当于编码器,\(p(\boldsymbol{x} | \boldsymbol{z})\) 相当于解码器,训练结束后只需要保留解码器 \(p(\boldsymbol{x} | \boldsymbol{z})\) 即可。

除了重构损失以外,VAE 还有一项 KL 散度损失,希望近似的后验分布 \(q(\boldsymbol{z} | \boldsymbol{x})\) 尽量接近先验分布 \(p(\boldsymbol{z})\),即最小化二者的 KL 散度。

变分下界的推导

现有 \(N\) 个由分布 \(P(\boldsymbol{x}; \boldsymbol{\theta})\) 生成的样本 \(\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(N)}\),我们可以使用极大似然估计从这些样本中估计出分布的参数 \(\boldsymbol{\theta}\),即

\[\begin{aligned} \boldsymbol{\theta} & = \operatorname*{argmax}_{\boldsymbol{\theta}} p(\boldsymbol{x}^{(1)}; \boldsymbol{\theta}) \cdots p(\boldsymbol{x}^{(N)}; \boldsymbol{\theta}) \\ & = \operatorname*{argmax}_{\boldsymbol{\theta}} \ln(p(\boldsymbol{x}^{(1)}; \boldsymbol{\theta}) \cdots p(\boldsymbol{x}^{(N)}; \boldsymbol{\theta})) \\ & = \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{i=1}^n \ln p(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}). \end{aligned} \]

后验分布 \(p(\boldsymbol{z} | \boldsymbol{x}) = \frac{p(\boldsymbol{z})p(\boldsymbol{x} | \boldsymbol{z})}{p(\boldsymbol{x})} = \frac{p(\boldsymbol{z})p(\boldsymbol{x} | \boldsymbol{z})}{\int_{\boldsymbol{z}} p(\boldsymbol{x}, \boldsymbol{z}) \mathrm{d}\boldsymbol{z}}\) 是 intractable 的,因为分母处的边缘分布 \(p(\boldsymbol{x})\) 积不出来。具体来说,联合分布 \(p(\boldsymbol{x}, \boldsymbol{z}) = p(\boldsymbol{z})p(\boldsymbol{x} | \boldsymbol{z})\) 的表达式非常复杂,\(\int_{\boldsymbol{z}} p(\boldsymbol{x}, \boldsymbol{z}) \mathrm{d}\boldsymbol{z}\) 这个积分找不到解析解。

需要使用变分推断解决后验分布无法计算的问题。我们使用一个形式已知的分布 \(q(\boldsymbol{z}|\boldsymbol{x}^{(i)}; \boldsymbol{\phi})\) 来近似后验分布 \(p(\boldsymbol{z}|\boldsymbol{x}^{(i)}; \boldsymbol{\theta})\),于是有

\[\begin{aligned} \log p(\boldsymbol{x}^{(i)}) & = \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) - \log p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] \mathrm{d}\boldsymbol{z} + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] \mathrm{d}\boldsymbol{z} + \log p(\boldsymbol{x}^{(i)}) \cdot 1 \\ & = \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})\log\frac{q(\boldsymbol{z}|\boldsymbol{x}^{(i)})}{p(\boldsymbol{z}|\boldsymbol{x}^{(i)})} \mathrm{d}\boldsymbol{z} + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] \mathrm{d}\boldsymbol{z} + \log p(\boldsymbol{x}^{(i)}) \cdot \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})\mathrm{d}\boldsymbol{z} \\ & = \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] \mathrm{d}\boldsymbol{z} + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})\log p(\boldsymbol{x}^{(i)}) \mathrm{d}\boldsymbol{z} \\ & = \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{x}^{(i)})] \mathrm{d}\boldsymbol{z} \\ & = \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log (p(\boldsymbol{z}|\boldsymbol{x}^{(i)})p(\boldsymbol{x}^{(i)}))] \mathrm{d}\boldsymbol{z} \\ & = \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{x}^{(i)}, \boldsymbol{z})] \mathrm{d}\boldsymbol{z} \\ & = \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] + \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z}|\boldsymbol{x}^{(i)})}[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{x}^{(i)}, \boldsymbol{z})] \\ & = \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] + L(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}^{(i)}) \\ & \geq L(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}^{(i)}). \end{aligned} \]

利用 KL 散度大于等于 0 这一特性,我们得到了对数似然 \(\log p(\boldsymbol{x}^{(i)})\) 的一个下界 \(L(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}^{(i)})\),于是可以将最大化对数似然改为最大化这个下界。

这个下界可以进一步写成

\[\begin{aligned} L(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}^{(i)}) & = \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{x}^{(i)}, \boldsymbol{z})] \mathrm{d}\boldsymbol{z} \\ & = \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log (p(\boldsymbol{z})p(\boldsymbol{x}^{(i)}|\boldsymbol{z}))] \mathrm{d}\boldsymbol{z} \\ & = \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{z}) + \log p(\boldsymbol{x}^{(i)}|\boldsymbol{z})] \mathrm{d}\boldsymbol{z} \\ & = -\int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) - \log p(\boldsymbol{z})] \mathrm{d}\boldsymbol{z} + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})\log p(\boldsymbol{x}^{(i)}|\boldsymbol{z})] \mathrm{d}\boldsymbol{z} \\ & = -\mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z})] + \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z}|\boldsymbol{x}^{(i)})}[\log p(\boldsymbol{x}^{(i)}|\boldsymbol{z})]. \\ \end{aligned} \]

其中的第一项是 KL 散度损失,第二项是重构损失。

KL 散度损失

使用标准正态分布作为先验分布,即 \(p(\boldsymbol{z}) = N(\boldsymbol{z}; \boldsymbol{0}, \boldsymbol{I})\)。

使用一个由 MLP 的输出来参数化的正态分布作为近似后验分布,即 \(q(\boldsymbol{z}|\boldsymbol{x}^{(i)}; \boldsymbol{\phi}) = N(\boldsymbol{z}; \boldsymbol{\mu}(\boldsymbol{x}^{(i)}; \boldsymbol{\phi}), \boldsymbol{\sigma}^2(\boldsymbol{x}^{(i)}; \boldsymbol{\phi})\boldsymbol{I})\)。

选择正态分布的好处在于 KL 散度的这个积分可以写出解析解,训练时直接按照公式计算即可,无需通过采样的方式来算积分。

由于我们选择的是各分量独立的多元正态分布,因此只需要推导一元正态分布的情形即可:

\[\begin{aligned} \mathrm{KL}[N(z; \mu, \sigma^2), N(z; 0, 1)] & = \int_z N(z; \mu, \sigma^2)\log\frac{N(z; \mu, \sigma^2)}{N(z; 0, 1)} \mathrm{d}z \\ & = \int_z N(z; \mu, \sigma^2) \log\frac{\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{(z - \mu)^2}{2\sigma^2}\right)}{\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{z^2}{2}\right)} \mathrm{d}z \\ & = \int_z N(z; \mu, \sigma^2) \log\left(\frac{1}{\sqrt{\sigma^2}}\exp\left(\frac{1}{2}\left(-\frac{(z - \mu^2)^2}{\sigma^2} + z^2\right)\right)\right) \mathrm{d}z \\ & = \frac{1}{2}\int_z N(z; \mu, \sigma^2) \left(-\log\sigma^2 - \frac{(z - \mu)^2}{\sigma^2} + z^2\right)\mathrm{d}z \\ & = \frac{1}{2}\left(-\log\sigma^2\int_z N(z; \mu, \sigma^2) \mathrm{d}z - \frac{1}{\sigma^2}\int_z N(z; \mu, \sigma^2)(z - \mu)^2\mathrm{d}z + \int_z N(z; \mu, \sigma^2)z^2\mathrm{d}z\right) \\ & = \frac{1}{2}\left(-\log\sigma^2 \cdot 1 - \frac{1}{\sigma^2} \cdot \sigma^2 + \mu^2 + \sigma^2\right) \\ & = \frac{1}{2}(-\log\sigma^2 - 1 + \mu^2 + \sigma^2). \end{aligned} \]

解释一下倒数第三行的三个积分:

  1. \(\int_z N(z; \mu, \sigma^2) \mathrm{d}z\) 是概率密度函数的积分,也就是 1。
  2. \(\int_z N(z; \mu, \sigma^2)(z - \mu)^2\mathrm{d}z\) 是方差的定义,也就是 \(\sigma^2\)。
  3. \(\int_z N(z; \mu, \sigma^2)z^2\mathrm{d}z\) 是正态分布的二阶矩,结果为 \(\mu^2 + \sigma^2\)。

重构损失

伯努利分布模型

当 \(\boldsymbol{x}\) 是二值向量时,可以用伯努利分布(两点分布)来建模 \(p(\boldsymbol{x}|\boldsymbol{z})\),即认为向量 \(\boldsymbol{x}\) 的每个维度都服从对应的相互独立的伯努利分布。使用一个 MLP 来计算各维度所对应的伯努利分布的参数,第 \(i\) 维伯努利分布的参数为 \(y_i = \boldsymbol{y}(\boldsymbol{z})_i\),于是有

\[p(\boldsymbol{x}|\boldsymbol{z}) = \prod_{i=1}^D y_i^{x_i}(1 - y_i)^{1 - x_i}, \]

\[\log p(\boldsymbol{x}|\boldsymbol{z}) = \sum_{i=1}^D x_i\log y_i + (1 - x_i)\log(1 - y_i). \]

其中 \(D\) 表示向量 \(\boldsymbol{x}\) 的维度。可见此时最大化 \(\log p(\boldsymbol{x}|\boldsymbol{z})\) 等价于最小化交叉熵损失。

正态分布模型

当 \(\boldsymbol{x}\) 是实值向量时,可以用正态分布来建模 \(p(\boldsymbol{x}|\boldsymbol{z})\)。使用一个 MLP 来计算正态分布的参数,于是有

\[\begin{aligned} p(\boldsymbol{x}|\boldsymbol{z}) & = N(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\sigma}^2\boldsymbol{I}) \\ & = \prod_{i=1}^D N(x_i; \mu_i, \sigma_i^2) \\ & = \left(\prod_{i=1}^D\frac{1}{\sqrt{2\pi}\sigma_i}\right)\exp\left(\sum_{i=1}^D-\frac{(x_i - \mu_i)^2}{2\sigma_i^2}\right), \end{aligned} \]

\[\log p(\boldsymbol{x}|\boldsymbol{z}) = -\frac{D}{2}\log 2\pi - \frac{1}{2}\sum_{i=1}^D\log\sigma_i^2 - \frac{1}{2}\sum_{i=1}^D\frac{(x_i - \mu_i)^2}{\sigma_i^2}. \]

很多时候我们会假设 \(\sigma_i^2\) 是一个常数,于是 MLP 只需要输出均值参数 \(\boldsymbol{\mu}\) 即可。此时有

\[\log p(\boldsymbol{x}|\boldsymbol{z}) \sim -\frac{1}{2}\sum_{i=1}^D(x_i - \mu_i)^2 = -\frac{1}{2}\|\boldsymbol{x} - \boldsymbol{\mu}(\boldsymbol{z})\|^2. \]

可见此时最大化 \(\log p(\boldsymbol{x}|\boldsymbol{z})\) 等价于最小化 MSE 损失。

重参数化技巧

需要使用重参数化技巧解决采样 \(z\) 时不可导的问题。解决的思路是先从无参数分布中采样一个 \(\varepsilon\),再通过变换得到 \(z\)。

从 \(N(\mu, \sigma^2)\) 中采样一个 \(z\),相当于先从 \(N(0, 1)\) 中采样一个 \(\varepsilon\),然后令 \(z = \mu + \varepsilon\cdot\sigma\)。

相关知识

技巧,通过取对数把乘除变成加减:

\[\ln ab = \ln a + \ln b,\ \ln\frac{a}{b} = \ln a - \ln b. \]

随机变量的函数的期望:

\[\mathbb{E}_{x \sim P(x)} g(x) = \int_x p(x)g(x) \mathrm{d}x, \]

利用此公式可以将积分改写成期望的形式,这样就可以用采样的方式计算积分了(蒙特卡罗积分法)。

条件概率密度的定义:

\[p_{Y|X}(y|x) = \frac{p(x, y)}{p_X(x)}, \]

此处的 \(p\) 并不是概率而是概率密度函数,但是这个公式在形式上跟条件概率公式是一样的。

参考资料

苏剑林的 VAE 系列博客:

15 分钟了解变分推理:

标签:编码器,frac,log,boldsymbol,变分,VAE,mu,sigma,mathrm
From: https://www.cnblogs.com/zhb2000/p/variational-autoencoder.html

相关文章

  • 台达A2 B2伺服电机编码器改功率软件 台达A2 B2伺服电机编码修改
    台达A2B2伺服电机编码器改功率软件台达A2B2伺服电机编码修改,用于更换编码器写匹配电机参数,更改编码器功率匹配驱动器测试维修用"台达A2B2伺服电机编码器改功率软件"是一款用于修改台达A2B2型号的伺服电机编码器的软件。它的主要功能是更换编码器并编写匹配的电机参数,以及修改......
  • matlab中使用VMD(变分模态分解)对信号去噪|附代码数据
    原文链接:http://tecdat.cn/?p=12486最近我们被客户要求撰写关于VMD的研究报告,包括一些图形和统计输出。创建一个以4kHz采样的信号,类似于拨打数字电话的所有键拨号音信号的变模分解将信号另存为MATLAB®时间数据。 fs = 4e3;t = 0:1/fs:0.5-1/fs;绘制时间表的变分模......
  • 刷新20项代码任务SOTA,Salesforce提出新型基础LLM系列编码器-解码器Code T5+
    前言 大型语言模型(LLMs)最近在代码层面的一系列下游任务中表现十分出彩。通过对大量基于代码的数据(如GitHub公共数据)进行预训练,LLM可以学习丰富的上下文表征,这些表征可以迁移到各种与代码相关的下游任务。但是,许多现有的模型只能在一部分任务中表现良好,这可能是架构和......
  • Arduino连接带按键的编码器ec11使用 Bounce2库 实例代码
    #include<Bounce2.h>//定义编码器引脚constintencoderPinA=2;constintencoderPinB=3;constintbuttonPin=4;//创建编码器对象和按键对象BounceencoderButton=Bounce();BounceencoderPinAButton=Bounce();BounceencoderPinBButton=Bounce();vo......
  • 深度学习阅读笔记(二)之自动编码器SAD
    一、自动编码器(DAE)   7. 《深度自动编码器的研究与展望》   主要内容:讲述了自动编码器的发展由来。阐述了DAE的基本概念和原理;网络模型的构建和训练方法。并对DAE进行了分类,指出了DAE存在的问题和对DAE未来发展的展望。  (1)自动编码器比传统BP网络的优势:免去了人工提取数据......
  • javaee项目
       ......
  • 对抗性自动编码器系列--有监督对抗自动编码器SAAE的原理及实现-随机数生成想要的数字
    文章目录前言监督对抗性自动编码器SAAE风格和内容的分离SAAE训练结果AEAAESAAE实验对比结果恢复效果对比从随机数重建图像的效果这部分实验代码前言先来看看实验:我们使用MNIST手写数字,测试通过自动编码器和对抗性自动编码器学习重建恢复效果。原始图像:自动编码器重建效果......
  • 对抗性自动编码器系列--自动编码器AutoEncoder的原理及实现-手写数字的重建
    文章目录前言自动编码器介绍自动编码器重建手写数字关于损失函数重建结果这部分实验代码前言先来看看实验:我们使用MNIST手写数字,测试通过自动编码器和对抗性自动编码器学习重建恢复效果。原始图像:自动编码器重建效果对抗性自动编码器重建效果虽然这里看到,自动编码器和对抗性自......
  • 视频编码器的智能化——AI辅助编解码的ASIC解决方案
    在此次LiveVideoStackCon2021音视频技术大会北京站,来自镕铭半导体的刘迅思详细列举了目前常用的AI辅助编解码的方法,论述如何在硬件和软件层面将AI结合编解码的实践,探索新的标准和新一代编码器结合AI应该如何设计。文|刘迅思整理|LiveVideoStack大家好,我是来自NETINT镕铭半导......
  • 双编码器的自然语言图像搜索
    正文字数:5798 阅读时长:10 分钟如何构建一个双编码器(也称为双塔)神经网络模型,以使用自然语言搜索图像。作者/ KhalidSalama原文链接/https://keras.io/examples/nlp/nl_image_search/1介绍该示例演示了如何构建一个双编码器(也称为双塔)神经网络模型,以使用自然语言搜索图像。该......