首页 > 其他分享 >动态规划之 背包问题问法的变化

动态规划之 背包问题问法的变化

时间:2023-06-30 21:12:39浏览次数:36  
标签:方案 方程 背包 .. 物品 最优 动态 问法

以上涉及的各种背包问题都是要求在背包容量(费用)的限制下求可以取到的最大价值,但背包问题还有很多种灵活的问法,在这里值得提一下。但是我认为,只要深入理解了求背包问题最大价值的方法,即使问法变化了,也是不难想出算法的。

例如,求解最多可以放多少件物品或者最多可以装满多少背包的空间。这都可以根据具体问题利用前面的方程求出所有状态的值(f数组)之后得到。

还有,如果要求的是“总价值最小”“总件数最小”,只需简单的将上面的状态转移方程中的max改成min即可。

下面说一些变化更大的问法。

输出方案

一般而言,背包问题是要求一个最优值,如果要求输出这个最优值的方案,可以参照一般动态规划问题输出方案的方法:记录下每个状态的最优值是由状态转移方程的哪一项推出来的,换句话说,记录下它是由哪一个策略推出来的。便可根据这条策略找到上一个状态,从上一个状态接着向前推即可。

还是以01背包为例,方程为f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}。再用一个数组g[i][v],设g[i][v]=0表示推出f[i][v]的值时是采用了方程的前一项(也即f[i][v]=f[i-1][v]),g[i][v]表示采用了方程的后一项。注意这两项分别表示了两种策略:未选第i个物品及选了第i个物品。那么输出方案的伪代码可以这样写(设最终状态为f[N][V]):

i=N
v=V
while(i>0)
    if(g[i][v]==0)
        print "未选第i项物品"
    else if(g[i][v]==1)
        print "选了第i项物品"
        v=v-c[i]

另外,采用方程的前一项或后一项也可以在输出方案的过程中根据f[i][v]的值实时地求出来,也即不须纪录g数组,将上述代码中的g[i][v]==0改成f[i][v]==f[i-1][v],g[i][v]==1改成f[i][v]==f[i-1][v-c[i]]+w[i]也可。

输出字典序最小的最优方案

这里“字典序最小”的意思是1..N号物品的选择方案排列出来以后字典序最小。以输出01背包最小字典序的方案为例。

一般而言,求一个字典序最小的最优方案,只需要在转移时注意策略。首先,子问题的定义要略改一些。我们注意到,如果存在一个选了物品1的最优方案,那么答案一定包含物品1,原问题转化为一个背包容量为v-c[1],物品为2..N的子问题。反之,如果答案不包含物品1,则转化成背包容量仍为V,物品为2..N的子问题。不管答案怎样,子问题的物品都是以i..N而非前所述的1..i的形式来定义的,所以状态的定义和转移方程都需要改一下。但也许更简易的方法是先把物品逆序排列一下,以下按物品已被逆序排列来叙述。

在这种情况下,可以按照前面经典的状态转移方程来求值,只是输出方案的时候要注意:从N到1输入时,如果f[i][v]==f[i-1][i-v]及f[i][v]==f[i-1][f-c[i]]+w[i]同时成立,应该按照后者(即选择了物品i)来输出方案。

求方案总数

对于一个给定了背包容量、物品费用、物品间相互关系(分组、依赖等)的背包问题,除了再给定每个物品的价值后求可得到的最大价值外,还可以得到装满背包或将背包装至某一指定容量的方案总数。

对于这类改变问法的问题,一般只需将状态转移方程中的max改成sum即可。例如若每件物品均是完全背包中的物品,转移方程即为

f[i][v]=sum{f[i-1][v],f[i][v-c[i]]}

初始条件f[0][0]=1。

事实上,这样做可行的原因在于状态转移方程已经考察了所有可能的背包组成方案。

最优方案的总数

这里的最优方案是指物品总价值最大的方案。以01背包为例。

结合求最大总价值和方案总数两个问题的思路,最优方案的总数可以这样求:f[i][v]意义同前述,g[i][v]表示这个子问题的最优方案的总数,则在求f[i][v]的同时求g[i][v]的伪代码如下:

for i=1..N
   for v=0..V
        f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
        g[i][v]=0
        if(f[i][v]==f[i-1][v])
            inc(g[i][v],g[i-1][v])
        if(f[i][v]==f[i-1][v-c[i]]+w[i])
            inc(g[i][v],g[i-1][v-c[i]])

如果你是第一次看到这样的问题,请仔细体会上面的伪代码。

求次优解、第K优解

对于求次优解、第K优解类的问题,如果相应的最优解问题能写出状态转移方程、用动态规划解决,那么求次优解往往可以相同的复杂度解决,第K优解则比求最优解的复杂度上多一个系数K。

其基本思想是将每个状态都表示成有序队列,将状态转移方程中的max/min转化成有序队列的合并。这里仍然以01背包为例讲解一下。

首先看01背包求最优解的状态转移方程:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}。如果要求第K优解,那么状态f[i][v]就应该是一个大小为K的数组f[i][v][1..K]。其中f[i][v][k]表示前i个物品、背包大小为v时,第k优解的值。“f[i][v]是一个大小为K的数组”这一句,熟悉C语言的同学可能比较好理解,或者也可以简单地理解为在原来的方程中加了一维。显然f[i][v][1..K]这K个数是由大到小排列的,所以我们把它认为是一个有序队列。

然后原方程就可以解释为:f[i][v]这个有序队列是由f[i-1][v]和f[i-1][v-c[i]]+w[i]这两个有序队列合并得到的。有序队列f[i-1][v]即f[i-1][v][1..K],f[i-1][v-c[i]]+w[i]则理解为在f[i-1][v-c[i]][1..K]的每个数上加上w[i]后得到的有序队列。合并这两个有序队列并将结果的前K项储存到f[i][v][1..K]中的复杂度是O(K)。最后的答案是f[N][V][K]。总的复杂度是O(VNK)。

为什么这个方法正确呢?实际上,一个正确的状态转移方程的求解过程遍历了所有可用的策略,也就覆盖了问题的所有方案。只不过由于是求最优解,所以其它在任何一个策略上达不到最优的方案都被忽略了。如果把每个状态表示成一个大小为K的数组,并在这个数组中有序的保存该状态可取到的前K个最优值。那么,对于任两个状态的max运算等价于两个由大到小的有序队列的合并。

另外还要注意题目对于“第K优解”的定义,将策略不同但权值相同的两个方案是看作同一个解还是不同的解。如果是前者,则维护有序队列时要保证队列里的数没有重复的。

小结

显然,这里不可能穷尽背包类动态规划问题所有的问法。甚至还存在一类将背包类动态规划问题与其它领域(例如数论、图论)结合起来的问题,在这篇论背包问题的专文中也不会论及。但只要深刻领会前述所有类别的背包问题的思路和状态转移方程,遇到其它的变形问法,只要题目难度还属于NOIP,应该也不难想出算法。

触类旁通、举一反三,应该也是一个OIer应有的品质吧。

标签:方案,方程,背包,..,物品,最优,动态,问法
From: https://www.cnblogs.com/shoshana-kong/p/17517826.html

相关文章

  • 动态规划之泛化物品
    定义考虑这样一种物品,它并没有固定的费用和价值,而是它的价值随着你分配给它的费用而变化。这就是泛化物品的概念。更严格的定义之。在背包容量为V的背包问题中,泛化物品是一个定义域为0..V中的整数的函数h,当分配给它的费用为v时,能得到的价值就是h(v)。这个定义有一点点抽象,另一......
  • 动态规划之有依赖的背包问题
    简化的问题这种背包问题的物品间存在某种“依赖”的关系。也就是说,i依赖于j,表示若选物品i,则必须选物品j。为了简化起见,我们先设没有某个物品既依赖于别的物品,又被别的物品所依赖;另外,没有某件物品同时依赖多件物品。算法这个问题由NOIP2006金明的预算方案一题扩展而来。遵从该题......
  • 动态规划之分组的背包问题
    问题有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。算法这个问题变成了每组物品有若干种策略:是选择本组的某一件,还是......
  • 动态规划之混合三种背包问题
    问题如果将P01、P02、P03混合起来。也就是说,有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。应该怎么求解呢?01背包与完全背包的混合考虑到在P01和P02中给出的伪代码只有一处不同,故如果只有两类物品:一类物品只能取一次,另一类......
  • vue:<img>动态绑定的路径无法解析问题
    问题我们引用图片,正常的静态img图片是这么引用的<imgsrc="@/assets/img/icoms/people.png"/>没问题,只要路径正确在vue中动态绑定路径:src<img:src="@/assets/img/icoms/people.png"/>发现图片根本加载不出来,因为:src根本不能解析@/assets/img/icoms/people.png解决......
  • 动态规划01
    动态规划核心要义这一步的数据依据上一步或者上两步的数据动态规划五部确定dp数组(dptable)以及下标的含义确定递推公式dp数组如何初始化确定遍历顺序举例推导dp数组动态规划第一题斐波那契数列dp[i]表示第i个数列的值递推公式已经给出f(n)=f(n-1)+f(n-2)初始化已......
  • 第三讲 多重背包问题
    题目有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。基本算法这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物......
  • 带负载转矩观测器的永磁同步电动机控制方法。 负载转矩观测器无论是对静态的负载变化
    带负载转矩观测器的永磁同步电动机控制方法。负载转矩观测器无论是对静态的负载变化还是动态的负载变化都有很好的观测效果。一方面可以较好的跟踪负载转矩的变化,另一方面可以作为前馈减小电机转速的波动。原创文章,转载请说明出处,资料来源:http://imgcs.cn/5c/672148599043.html......
  • day114- 动态sql
    动态SQL解决拼接SQL语句字符串时的问题。if标签if标签可通过test属性的表达式进行判断,若表达式的结果为true,则标签中的内容会执行;反之标签中的内容不会执行<!--List<Emp>getEmpByCondition(Empemp);--><selectid="getEmpByCondition"resultType="com.gu.mybatis.poj......
  • 第一讲 01背包问题
    题目有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。基本思路这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值......