首页 > 其他分享 >热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸

热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸

时间:2023-06-25 18:03:04浏览次数:39  
标签:ONNX 模型 最美 神经网络 张量 PyTorch TensorFlow 我用 生成


这不,又一个程序员为爱变身灵魂画手,看得我都想学画画了。



热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_卷积神经网络


热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_卷积神经网络_02


热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_卷积神经网络_03


热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_深度学习_04


热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_卷积神经网络_05


热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_神经网络_06


热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_卷积神经网络_07


热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_神经网络_08


热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_神经网络_09


热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_深度学习_10


热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_卷积神经网络_11


阿华是幸运的,因为他找到了对的方法,事半功倍,最终有情人终成眷属。这也得益于 PyTorch 的易学易用,大多数人第一次使用 PyTorch 几乎可以做到无痛上手。就连深度学习三巨头之一,图灵奖得主 Yann LeCun 都在 Twitter 上为 PyTorch 背书。



热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_卷积神经网络_12


从 2017 年 1 月 Facebook 公司开源 PyTorch 以来,短短两年时间,PyTorch 便与老牌框架 TensorFlow 势均力敌,成为开源社区仅次于它的深度学习框架。随着越来越多的公司用 PyTorch 进行算法开发,想深入了解它的人变得多起来。


其实 PyTorch 拥有丰富且全面的开发文档,多数人可以通过文档实现完美自学,但是如果希望能够系统学习,免得修炼路上走火入魔的,那阿华获得的这本秘笈也同样适合你。究竟是怎样的秘笈呢?咱们可以小小打探一下。


这秘笈可以说架构非常清晰,分为基础篇、实战篇和高级篇。针对入门 PyTorch 的读者来说,这样的设定是一个最佳的学习路线,真正实现从入门到进阶,而不是从入门到失踪。(得意.JPG)


基础篇



热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_深度学习_13


工欲善其亊,必先利其器。为了满足深度学习任务中“高计算量”这一特殊需求,在基础篇里,作者便从硬件的选择讲起,教你如何配置一台合适的计算机,以及如何在 Mac OS X、Ubuntu 和 Windows 系统下配置 PyTorch 的运行环境。配置完毕后,万事俱备,PyTorch 的学习就要正式开始啦!

我们曾接触过一些其他的深度学习框架,它们大多会涉及一个基本概念,就是 Tensor。何为 Tensor 呢?中文叫作张量,它是 PyTorch 中最基本的数据类型。


Tensor 之于 PyTorch,就好比 Array 之于 NumPy。零维张量就是数字或者标量,一维张量就是向量,二维或者更高维就是矩阵。不管是自然语言处理还是图片处理,都需要把输入信息转化为高维数字矩阵的形式,张量可以说起到了很大的作用。


热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_卷积神经网络_14


(张量设计图)


除了张量外,作者还介绍了自动微分(Autograd),它是 PyTorch 进行神经网络优化的核心。让 PyTorch 自动为我们计算微分,这样你在构建自己的函数用于 backward 时,就无需再手动求导了。


基础篇还介绍了一些深度学习的基础知识,这里有你熟悉的线性回归、非线性回归以及逻辑回归。多元分类、反向传播、卷积神经网络等也有涉及。还有两个实现手写体自动识别器的操作给你练手。


实战篇



热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_卷积神经网络_15


实战篇介绍了一些实际的操作方法。假如,我们想做一个小猫识别系统,但是只拥有少量的“小猫标注图片数据”和大量的“小狗标注图片数据”。要怎么办?


你可以先利用大量的小狗图片对卷积神经网络进行训练。由于猫和狗非常相似,所以只要拿少量的小猫图片对该卷积神经网络的全连接层进行微调,就可以得到一个非常好用的小猫识别系统。是不是很腻害。


热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_神经网络_16


早在 2014 年,Goodfellow 就提出了生成对抗网络。2016 年起,关于生成对抗网络的论文数量呈指数型增长。有热心人士就在 GitHub 上列出了所有生成对抗网络模型的变体,取名为“生成对抗网络的动物园”(The GAN Zoo)。目前该“动物园”一共列出了 503 种不同的生成对抗网络模型及其变体。


热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_深度学习_17


(生成对抗网络论文发表数量统计)


我们可以用生成对抗网络做一些有趣的、接近真实的东西,比如让机器自己产生一幅画、一段文字,或者让机器根据我们的输入条件生成一些东西,可以输入一张图片后输出一段文字描述,或者是输入一段男性的录音后输出一段女性的录音等。


比如,生成一张二次元的头像送给男/女朋友。不过具体步骤就等你自己去探秘啦。以下这些是我帮你收集好的小姐姐们,喜欢的话,拿去用!

热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_神经网络_18

不喜欢二次元?没关系!卷积神经网络还可以将一张图片的风格迁移到另外一张图片上,这样我就可以拥有梵高的《星月夜》了~



热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_深度学习_19


Boom!



热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_深度学习_20

突然感觉有点赞呢!

除此之外,实战篇还介绍了深度强化模型,以及序列转序列模型。通过序列转序列模型,作者利用 PyTorch 构造了一个神经翻译机,即将神经网络运用在文本翻译中。

因为一般的神经翻译机用的都是序列转序列(seq2seq)模型,神经翻译机会比以前非神经网络的传统算法的准确率高很多。相信会了这个之后,机器翻译再也不是用来搞笑的了。


热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_深度学习_21


(截图来自:谷歌翻译)


高级篇



热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_深度学习_22

掌握前两篇的内容之后,作者开始介绍一些 PyTorch 的高级用法。当然,这部分有人需要,有人还需持续修炼之后才会需要。不管怎么样,能学到这里的人,都应该给自己点奖励。

这部分作者分别从四个方面说起,分别是:PyTorch 扩展、PyTorch 模型迁移、Pytorch 可视化以及 Pytorch 的并行计算。

在 PyTorch 扩展中,作者除了介绍两种神经网络的自定义方法外,还介绍了如何将 PyTorch 模型部署到 C++ 环境下以满足在生产环境下,程序需要高性能、低延迟的要求。

在 PyTorch 模型迁移这部分中,作者讲解了如何使用 ONNX 将 PyTorch 模型迁移至 Caffe2,以及迁移至 Core ML。


(ONNX 即开放式神经网络交换,是早前微软和 Facebook 为了解决各种深度学习框架之间的模型迁移问题,共同发布的一个解决方案。如今,PyTorch、Caffe2、Microsoft Cognitive Toolkit 及 MXNet 等框架已经可以支持 ONNX,而 TensorFlow、Core ML 等其他框架虽然还没有官方支持 ONNX,但 ONNX 为它们提供了相应的转换器。)


热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_卷积神经网络_23


(ONNX 生态圈)

在 PyTorch 可视化这部分,教你通过使用 Tensorboard 和 Visdom 实现对 PyTorch 的可视化。同时还介绍了一个通用的神经网络可视化工具 Netron。


热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_深度学习_24


(visdom 的数据可视化结果)

为了提高训练模型的效率,在实际生产和运用中大部分人都会采用多个 GPU 并行的方式对模型进行训练。PyTorch 则为我们提供了方便的函数,可以自如地创建多个进程或者同时使用多个 GPU 训练模型。最后这部分主要介绍的就是如何将 PyTorch 在多进程、多 CPU 下进行运算。


热度直逼TensorFlow的深度学习框架,我用它画下女朋友最美的脸_神经网络_25


(多 GPU 训练示意图)

以上呢,就是阿华这本秘笈的主要内容。通篇看下来,作者真的非常了解正在入门 PyTorch 的小伙伴们的痛苦和需求,所以他选择了更适合初学者的思路与讲解方式,基本上是手把手在教了。

而且书中也不乏一些高级技能为已经入门的小伙伴做好进阶的准备。全书 233 页,读起来没啥压力。如果你愿意一步步跟着操作,那么,你会对 PyTorch 有一个全新的认识。

标签:ONNX,模型,最美,神经网络,张量,PyTorch,TensorFlow,我用,生成
From: https://blog.51cto.com/u_15767091/6547556

相关文章

  • 【已解决】【Tensorflow2.12.0版本以后合并CPU和GPU版】Tensorflow-gpu==2.12.0 安装
    !https://zhuanlan.zhihu.com/p/639416152解决方式:直接上解决方式,需要知道原因的看后文。直接安装tensroflow,从2022年12月起tensorflow-gpu已经合并到tensorflow包中了pipinstalltensorflow==2.12.0-ihttps://pypi.tuna.tsinghua.edu.cn/simple这里使用清华源......
  • TensorFlow11.2 循环神经网络RNN-循环神经网络、RNN-layer实现
    循环神经网络SentimentAnalysis(情感分析)类似于淘宝的好评还是差评,我们比较直观的一个方法就是:这里不好的是:Downsides:1.Longsentence100+wordstoomuchparameters[w,b]。就是比如说我们有100个单词,会产生很多个w,b,参数太多了。2.Nocontextinformation(没有语......
  • Tensorflow整理[11]. 变量创建初始化保存加载
    变量:创建、初始化、保存和加载当训练模型时,用变量来存储和更新参数。变量包含张量(Tensor)存放于内存的缓存区。建模时它们需要被明确地初始化,模型训练后它们必须被存储到磁盘。这些变量的值可在之后模型训练和分析是被加载。描述以下两个TensorFlow类。点击以下链接可查看完整的......
  • TensorFlow11.1 循环神经网络RNN01-序列表达方法
    在自然界中除了位置相关的信息(图片)以外,还用一种存在非常广泛的类型,就是时间轴上的数据,比如说序列信号,语音信号,聊天文字。就是有先后顺序。对于下面这个:不如说我们输入有10个句子,每个句子都有4个单词,然后我们怎么把这些句子转化为具体的数值呢。如果一个表示方法能够很好的表示这......
  • TensorFlow10.4 卷积神经网络-ResNet与DenseNet及ResNet实战
    1ResNet我们是实验发现在我们堆叠更多的网络结构的时候,我们并不能又一个很好的结果,就是它网络层次变多了之后他会产生一个多层的loss的堆叠,使得梯度爆炸,或者梯度弥散。然后我们想了一个办法,就是我们比如说设置了一个30层的神经网络,我们在差也不能比22层的差。就是我们设置了一......
  • TensorFlow10.4 卷积神经网络-batchnorm
    我们发现这个sigmoid函数在小于-4或者大于4的时候他的导数趋近于0。然后我们送进去的input的值在[-100,100]之间,这样很容易引起梯度弥散的现象。所以我们一般情况下使用ReLU函数,但是我们有时候又不得不使用sigmoid函数。这个时候我们在送到下一层的时候我们应该先经过Normalizatio......
  • TensorFlow10.3 卷积神经网络-经典卷积网络(VGG,GoogLeNet)
    LeNet-5这个是5层的,3个c+s,然后有两个全连接层。AlexNet这里有8(5+3)层。就是之前的技术没有现在的好,所以它用了两块GTX580,然后让你它的模型分成两块,然后在两块显卡中跑。很好的把显存给分开来了。VGG之前都是用\(11*11\)的窗口,然后它用了\(3*3\)的窗口,这个\(3*3\)的窗......
  • 【tensorflow】连续输入+离散输入的神经网络模型训练代码
    【tensorflow】连续输入+离散输入的神经网络模型训练代码离散输入的转化问题构造词典创建离散数据、转化字典索引、创建连续数据创建离散输入+连续输入模型训练输出全部代码-复制即用  查看本系列三种模型写法:  【tensorflow】连续输入的线性回归模型训练代码 ......
  • TensorFlow10.2 卷积神经网络-CIFAR100 实战
    ▪Loaddatasets▪BuildNetwork▪Train▪Test这里先是进行卷积然后再进行全连接Loaddatasetsdefpreprocess(x,y):#[0~1]x=tf.cast(x,dtype=tf.float32)/255.y=tf.cast(y,dtype=tf.int32)returnx,y(x,y),(x_test,y_test)=dat......
  • TensorFlow10.2 卷积神经网络-卷积神经网络池化层与采样
    ▪Pooling▪upsample▪ReLU我们看一下这个Subsampling层就是这个:这一层起到ReduceDim的作用。1Max/Avgpooling(下采样)keras.layers.MaxPooling2D(pool_size=,strides=,padding='valid',data_format=None)pool_size:池化窗口大小strides:池化步长,默认值等于p......