首页 > 其他分享 >TensorFlow10.4 卷积神经网络-batchnorm

TensorFlow10.4 卷积神经网络-batchnorm

时间:2023-06-24 15:47:41浏览次数:50  
标签:loss 这个 卷积 TensorFlow10.4 input batchnorm True 我们 Normalization

我们发现这个sigmoid函数在小于-4或者大于4的时候他的导数趋近于0。然后我们送进去的input的值在[-100,100]之间,这样很容易引起梯度弥散的现象。所以我们一般情况下使用ReLU函数,但是我们有时候又不得不使用sigmoid函数。这个时候我们在送到下一层的时候我们应该先经过Normalization操作。使得这个input变成N(0,\(z^2\))就是他的的input变成以0为均值,然后以z为方差的一个输入。就是使得这个input均匀的散布到0附近,然后再一个很小的范围变动。
image

我们发现这个\(x_1\)在很小的范围内进行变动的时候这loss变化很缓慢,但是这个\(x_2\)在一个很大的范围内进行变动的时候loss会急剧的变化。就像是第二张图一样,我们\(x_1\),\(x_2\)的范围一样,所以我们这个loss就像是一个圆一样。从哪个方向都一样。
这就是一个Feature scaling的概念。

  • image Normalization
    image

  • Batch Normalization
    dynamic mean/std

Batch Norm

image

image
这就是一个标准的batch Bormalization
image

layer.BatchNormalization

net = layers.BatchNormalization()

  • axis=-1,
  • center=True,
  • scale=True
  • trainable=True

net(x, training=None)

上面是是否使用\(\alpha\)和\(\beat\)

实战:
image
image
就是把一些N(10,10)=>N(0,1)(就是在0附近)
image

好处:
image

标签:loss,这个,卷积,TensorFlow10.4,input,batchnorm,True,我们,Normalization
From: https://www.cnblogs.com/lipu123/p/17500825.html

相关文章

  • TensorFlow10.3 卷积神经网络-经典卷积网络(VGG,GoogLeNet)
    LeNet-5这个是5层的,3个c+s,然后有两个全连接层。AlexNet这里有8(5+3)层。就是之前的技术没有现在的好,所以它用了两块GTX580,然后让你它的模型分成两块,然后在两块显卡中跑。很好的把显存给分开来了。VGG之前都是用\(11*11\)的窗口,然后它用了\(3*3\)的窗口,这个\(3*3\)的窗......
  • TensorFlow10.2 卷积神经网络-CIFAR100 实战
    ▪Loaddatasets▪BuildNetwork▪Train▪Test这里先是进行卷积然后再进行全连接Loaddatasetsdefpreprocess(x,y):#[0~1]x=tf.cast(x,dtype=tf.float32)/255.y=tf.cast(y,dtype=tf.int32)returnx,y(x,y),(x_test,y_test)=dat......
  • TensorFlow10.2 卷积神经网络-卷积神经网络池化层与采样
    ▪Pooling▪upsample▪ReLU我们看一下这个Subsampling层就是这个:这一层起到ReduceDim的作用。1Max/Avgpooling(下采样)keras.layers.MaxPooling2D(pool_size=,strides=,padding='valid',data_format=None)pool_size:池化窗口大小strides:池化步长,默认值等于p......
  • 垃圾识别系统Python+TensorFlow+Django+卷积神经网络算法【完整代码系统】
    一、介绍垃圾识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对5种垃圾数据集进行训练,最后得到一个识别精度较高的模型。并基于Django,开发网页端操作平台,实现用户上传一张垃圾图片识别其名称。二、效果展示三、演示视频+代码视......
  • 交通标志识别系统Python+TensorFlow+Django+卷积神经网络算法实现【完整代码】
    一、介绍使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django,开发网页端操作平台,实现用户上传一张图片识别其名称。二、效果展示三、演示视频视频+完整代码:https://www.yuque.......
  • 花朵识别系统Python+TensorFlow+Django+卷积神经网络算法实现
    一、背景花朵识别系统,基于Python实现,深度学习卷积神经网络,通过TensorFlow搭建卷积神经网络算法模型,并对数据集进行训练最后得到训练好的模型文件,并基于Django搭建可视化操作平台。在当今信息化社会,图像识别技术在各种领域都展现出了重要的应用价值,包括医学影像分析、自动驾驶、......
  • 文本识别分类系统python,基于深度学习的CNN卷积神经网络算法
    一、介绍文本分类系统,使用Python作为主要开发语言,通过TensorFlow搭建CNN卷积神经网络对十余种不同种类的文本数据集进行训练,最后得到一个h5格式的本地模型文件,然后采用Django开发网页界面,实现用户在界面中输入一段文字,识别其所属的文本种类。在我们的日常生活和工作中,文本数据无......
  • 吴恩达卷积神经网络
    过滤器、padding(6)、卷积步长(7)、三维卷积、池化层神经网络的前几层如何检测边缘,有些后面的层可能检测到物体的部分,更靠后的一些层,可能检测到完整的物体eg:给一个例子,可能首先检测图片中的垂直边缘,或者那你想检测水平边缘这是6*6*1的灰度矩阵,不是6*6*3的,因为没有RGB三通道。可......
  • 蔬菜识别系统Python+TensorFlow+Django+卷积神经网络算法
    一、介绍蔬菜识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称。二、效果图片三、演示视频+代码视频+完整......
  • 鸟类识别系统Python+Django+TensorFlow+卷积神经网络算法【完整代码】
    一、介绍鸟类识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称。数据集选自加州理工学院200种鸟类数据集二、......