一、介绍
蔬菜识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
二、效果图片
三、演示视频+代码
视频+完整代码:https://www.yuque.com/ziwu/yygu3z/uc1z9asdufhe1co7
四、TensorFlow图像分类示例
TensorFlow是由Google开发的开源机器学习框架,广泛应用于深度学习任务。它提供了一套丰富的工具和库,使得构建、训练和部署深度学习模型变得更加简单和高效。TensorFlow基于数据流图的概念,使用图来表示计算过程中的数据流动。它的核心是张量(Tensor),是多维数组的抽象,可以在计算图中流动。
在进行图像识别分类之前,我们需要准备训练数据。通常情况下,我们需要一个包含训练图像和对应标签的数据集。TensorFlow提供了一些便捷的工具来加载和处理图像数据。以下是一个加载图像数据集的示例代码:
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# 定义数据集路径
train_dir = 'train/'
val_dir = 'validation/'
# 设置图像预处理参数
train_datagen = ImageDataGenerator(rescale=1./255,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
val_datagen = ImageDataGenerator(rescale=1./255)
# 加载训练数据集
train_generator = train_datagen.flow_from_directory(train_dir,
target_size=(224, 224),
batch_size=32,
class_mode='categorical')
# 加载验证数据集
val_generator = val_datagen.flow_from_directory(val_dir,
target_size=(224, 224),
batch_size=32,
class_mode='categorical')
在上述代码中,我们使用ImageDataGenerator来定义图像的预处理参数,并通过flow_from_directory方法从目录中加载数据集。
在TensorFlow中,我们可以使用Keras API来构建图像识别分类模型。Keras提供了一系列方便易用的层和模型,可以帮助我们快速构建深度学习模型。以下是一个使用Keras构建图像分类模型的示例代码:
from tensorflow.keras.applications import VGG16
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
# 加载预训练的VGG16模型
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
# 冻结预训练模型的权重
for layer in base_model.layers:
layer.trainable = False
# 构建分类模型
model = Sequential()
model.add(base_model)
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dense(10, activation='softmax'))
# 编译模型
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
在上述代码中,我们使用了VGG16作为预训练的模型,并在其基础上构建了一个全连接层分类模型。
本文介绍了TensorFlow在图像识别分类中的应用,并通过相关代码进行了讲解。通过TensorFlow提供的工具和库,我们可以方便地构建、训练和评估图像识别分类模型。
标签:Python,模型,Django,train,TensorFlow,model,224,加载 From: https://www.cnblogs.com/shiqianlong/p/17497572.html