首页 > 其他分享 >实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

时间:2022-09-27 20:34:43浏览次数:40  
标签:struct OpenFlow 端口 实践 header ofp uint16 实验 port

一、实验目的

1.能够运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包;
2.能够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制。

二、实验环境

Ubuntu 20.04

三、实验要求

1)基本要求

1.搭建下图所示拓扑,完成相关 IP 配置,并实现主机与主机之间的 IP 通信。

2.抓包软件获取控制器与交换机之间的通信数据包。

(1)OFPT_HELLO

控制器6633端口(我最高能支持OpenFlow 1.0) ---> 交换机57782端口

交换机57782端口(我最高能支持OpenFlow 1.5) ---> 控制器6633端口

(2)Features_Request

控制器6633端口(我需要你的特征信息) ---> 交换机57782端口

(3)Set_Config

控制器6633端口(请按照我给你的flag和max bytes of packet进行配置) ---> 交换机57782端口

(4)Port_Status

当交换机端口发生变化时,告知控制器相应的端口状态。

(5)Features_Reply

交换机57782端口(这是我的特征信息,请查收) ---> 控制器6633端口

(6)Packet_in

交换机57782端口(有数据包进来,请指示)--- 控制器6633端口

(7)Packet_out

控制器6633端口--->交换机57782端口(请按照我给你的action进行处理)

(8)open_flow_mod

2. 分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图。

3.回答:交换机与控制器建立通信时是使用TCP协议还是UDP协议?

TCP协议

2)进阶要求

将抓包结果对照OpenFlow源码,了解OpenFlow主要消息类型对应的数据结构定义。相关数据结构可在openflow安装目录openflow/include/openflow当中的openflow.h头文件中查询到。

hello


代码:

点击查看代码
/* Header on all OpenFlow packets. */
struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};

FEATURES_REQUEST


与hello代码段一致

SET_CONFIG


代码:

点击查看代码
/* Switch configuration. */
struct ofp_switch_config {
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};

PORT_STATUS

点击查看代码
/* A physical port has changed in the datapath */
struct ofp_port_status {
    struct ofp_header header;
    uint8_t reason;          /* One of OFPPR_*. */
    uint8_t pad[7];          /* Align to 64-bits. */
    struct ofp_phy_port desc;
};

FEATURES_REPLAY


代码:

点击查看代码
/* Description of a physical port */
struct ofp_phy_port {
    uint16_t port_no;
    uint8_t hw_addr[OFP_ETH_ALEN];
    char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */

    uint32_t config;        /* Bitmap of OFPPC_* flags. */
    uint32_t state;         /* Bitmap of OFPPS_* flags. */

    /* Bitmaps of OFPPF_* that describe features.  All bits zeroed if
     * unsupported or unavailable. */
    uint32_t curr;          /* Current features. */
    uint32_t advertised;    /* Features being advertised by the port. */
    uint32_t supported;     /* Features supported by the port. */
    uint32_t peer;          /* Features advertised by peer. */
};
/* Switch features. */
struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */

    uint32_t n_buffers;     /* Max packets buffered at once. */

    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */

    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};

PACKET_IN


代码:

点击查看代码
struct ofp_packet_in {
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};

PACKET_OUT


代码:

点击查看代码
/* Send packet (controller -> datapath). */
struct ofp_packet_out {
    struct ofp_header header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};

flow_mod


代码:

点击查看代码
/* Flow setup and teardown (controller -> datapath). */
struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */

    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};

实验总结

本次实验内容较为简单,按照实验pdf文档能够很快掌握,主要是要理解实验的步骤流程,直接先运行wireshark再运行拓扑然后pingall就可以了。在这次实验我学会了运用wireshark对OpenFlow协议数据交互过程进行抓包,并且能够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制。进一步理解了网络拓扑结构的构建过程,以及通过抓包了解交换机与控制器器建立通信时是使用TCP协议。

标签:struct,OpenFlow,端口,实践,header,ofp,uint16,实验,port
From: https://www.cnblogs.com/lqq-name-johnson/p/16735827.html

相关文章

  • 实验2:Open vSwitch虚拟交换机实践
    实验2:OpenvSwitch虚拟交换机实践(一)基本要求ovs-vsctl基础操作实践:创建OVS交换机,以ovs-xxxxxxxxx命名,其中xxxxxxxxx为本人学号。在创建的交换机上增加端口p0和p1,设置p0......
  • 实验3 OpenFlow协议分析实践
    实验3OpenFlow协议分时实践基础实验抓包分析step1:搭建拓扑并配置相应IPIP配置如下:step2:Pingall并抓包step3:分析(1)hello包表示含义:控制器6633端口发送“我最......
  • 实验3:OpenFlow协议分析实践
    基本要求一、拓扑文件二、Wireshark抓包结果1、hello控制台6633端口→交换机33440端口hello交换机33440端口→控制台6633端口2、FeaturesRequest控制台6633端......
  • 实验3:OpenFlow协议分析实践
    (一)基本要求1.导入到/home/用户名/学号/lab3/目录下的拓扑文件//实践代码如下#!/usr/bin/envpythonfrommininet.netimportMininetfrommininet.nodeimportCon......
  • 实验2:Open vSwitch虚拟交换机实践
    实验2:OpenvSwitch虚拟交换机实践一、实验目的能够对OpenvSwitch进行基本操作;能够通过命令行终端使用OVS命令操作OpenvSwitch交换机,管理流表;能够通过Mininet的Python......
  • 实验2:Open vSwitch虚拟交换机实践
    实验2:OpenvSwitch虚拟交换机实践一、实验目的能够对OpenvSwitch进行基本操作;能够通过命令行终端使用OVS命令操作OpenvSwitch交换机,管理流表;能够通过Mininet的Pytho......
  • 实验3:OpenFlow协议分析实践
    实验报告基本要求/home/用户名/学号/lab3/目录下的拓扑文件wireshark抓包的结果截图1.hello控制器6633端口(我最高能支持OpenFlow1.0)-->交换机45390端口......
  • Open vSwitch虚拟交换机实践
    实验2:OpenvSwitch虚拟交换机实践(一)基本要求1.ovs-vsctl基础操作实践:创建OVS交换机,完成相关要求后查看网络状态与端口信息:2.使用Mininet搭建的SDN拓扑,如下图所示,要求......
  • 实验2:Open vSwitch虚拟交换机实践
    实验2:OpenvSwitch虚拟交换机实践一、实验目的能够对OpenvSwitch进行基本操作;能够通过命令行终端使用OVS命令操作OpenvSwitch交换机,管理流表;能够通过Mininet的Pytho......
  • 实验2:Open vSwitch虚拟交换机实践
    (一)基本要求1.ovs-vsctl基础操作实践:创建OVS交换机,以ovs-xxxxxxxxx命名,其中xxxxxxxxx为本人学号。在创建的交换机上增加端口p0和p1,设置p0的端口号为100,p1的端口号为101,类......