首页 > 其他分享 >实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

时间:2022-09-27 19:55:33浏览次数:38  
标签:struct OpenFlow 端口 实践 header ofp 交换机 实验 net

(一)基本要求

1. 导入到/home/用户名/学号/lab3/目录下的拓扑文件

image-20220927161756923

//实践代码如下
#!/usr/bin/env python

from mininet.net import Mininet
from mininet.node import Controller, RemoteController, OVSController
from mininet.node import CPULimitedHost, Host, Node
from mininet.node import OVSKernelSwitch, UserSwitch
from mininet.node import IVSSwitch
from mininet.cli import CLI
from mininet.log import setLogLevel, info
from mininet.link import TCLink, Intf
from subprocess import call

def myNetwork():

    net = Mininet( topo=None,
                   build=False,
                   ipBase='192.168.0.0/24')

    info( '*** Adding controller\n' )
    c0=net.addController(name='c0',
                      controller=Controller,
                      protocol='tcp',
                      port=6633)

    info( '*** Add switches\n')
    s1 = net.addSwitch('s1', cls=OVSKernelSwitch)
    s2 = net.addSwitch('s2', cls=OVSKernelSwitch)

    info( '*** Add hosts\n')
    h1 = net.addHost('h1', cls=Host, ip='192.168.0.101', defaultRoute=None)
    h2 = net.addHost('h2', cls=Host, ip='192.168.0.102', defaultRoute=None)
    h3 = net.addHost('h3', cls=Host, ip='192.168.0.103', defaultRoute=None)
    h4 = net.addHost('h4', cls=Host, ip='192.168.0.104', defaultRoute=None)

    info( '*** Add links\n')
    net.addLink(h1, s1)
    net.addLink(h3, s1)
    net.addLink(s1, s2)
    net.addLink(s2, h2)
    net.addLink(s2, h4)

    info( '*** Starting network\n')
    net.build()
    info( '*** Starting controllers\n')
    for controller in net.controllers:
        controller.start()

    info( '*** Starting switches\n')
    net.get('s1').start([c0])
    net.get('s2').start([c0])

    info( '*** Post configure switches and hosts\n')

    CLI(net)
    net.stop()

if __name__ == '__main__':
    setLogLevel( 'info' )
    myNetwork()


2. Wireshark抓包结果

  • OFPT_HELLO 控制器6633端口(我最高能支持OpenFlow 1.0) ---> 交换机38928端口

  • image-20220927162324730

  • 交换机38928端口(我最高能支持OpenFlow 1.5) ---> 控制器6633端口

    image-20220927162415619

    控制器与交换机建立连接,并使用OpenFlow 1.0

  • OFPT_FEATURES_REQUEST 控制器6633端口(我需要你的特征信息) ---> 交换机38928端口
    image-20220927162500878

    控制器请求交换器的特征信息

  • OFPT_SET_CONFIG 控制器6633端口(请按照我给你的flag和max bytes of packet进行配置) ---> 交换机38928端口
    image-20220927162548827

    控制器要求交换机按照所给出的信息进行配置

  • OFPT_PORT_STATUS 源端口38928 -> 目的端口6633,从交换机到控制器
    img

    当交换机端口发生变化时,告知控制器相应的端口状态。

  • OFPT_FEATURES_REPLY 交换机38928端口(这是我的特征信息,请查收) ---> 控制器6633端口
    image-20220927162703297

    交换机告知控制器它的特征信息

  • OFPT_PACKET_IN 交换机38928端口(有数据包进来,请指示)--->控制器6633端口
    image-20220927162748988

    交换机告知控制器有数据包进来,请求控制器指示

  • OFPT_PACKET_OUT 控制器6633端口--->交换机38928端口(请按照我给你的action进行处理)
    image-20220927162822110

    控制器要求交换机按照所给出的action进行处理

  • OFPT_FLOW_MOD 分析抓取的flow_mod数据包,控制器通过6633端口向交换机38928端口、交换机38932端口下发流表项,指导数据的转发处理

  • image-20220927162941411

3.画出相关交互图或流程图:

img

7.回答问题:交换机与控制器建立通信时是使用TCP协议还是UDP协议?

image-20220927163057533

如图所示为(Transmission Control Protocol)TCP协议。

(二)进阶要求

将抓包基础要求第2步的抓包结果对照OpenFlow源码,了解OpenFlow主 要消息类型对应的数据结构定义。
1. HELLO

image-20220927163319515

struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};
struct ofp_hello {
    struct ofp_header header;
};

可以看到对应了HELLO报文的四个参数

2. FEATURES_REQUEST
image-20220927163404563

源码参数格式与HELLO相同,与上述ofp_header结构体中数据相同

3.SET_CONFIG
image-20220927163432620

控制器下发的交换机配置数据结构体

/* Switch configuration. */
struct ofp_switch_config {
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};

4. PORT_STATUS
image-20220927163600016

/* A physical port has changed in the datapath */
struct ofp_port_status {
    struct ofp_header header;
    uint8_t reason;          /* One of OFPPR_*. */
    uint8_t pad[7];          /* Align to 64-bits. */
    struct ofp_phy_port desc;
};

5. FEATURES_REPLY

image-20220927163638799

struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */

    uint32_t n_buffers;     /* Max packets buffered at once. */

    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */

    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};
/* Description of a physical port */
struct ofp_phy_port {
    uint16_t port_no;
    uint8_t hw_addr[OFP_ETH_ALEN];
    char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */

    uint32_t config;        /* Bitmap of OFPPC_* flags. */
    uint32_t state;         /* Bitmap of OFPPS_* flags. */

    /* Bitmaps of OFPPF_* that describe features.  All bits zeroed if
     * unsupported or unavailable. */
    uint32_t curr;          /* Current features. */
    uint32_t advertised;    /* Features being advertised by the port. */
    uint32_t supported;     /* Features supported by the port. */
    uint32_t peer;          /* Features advertised by peer. */
};

可以看到与图中信息一一对应,包括交换机物理端口的信息

6. PACKET_IN

PACKET_IN有两种情况:

  1. 交换机查找流表,发现没有匹配条目,但是这种包没有抓到过
enum ofp_packet_in_reason {
    OFPR_NO_MATCH,          /* No matching flow. */
    OFPR_ACTION             /* Action explicitly output to controller. */
};
  1. 有匹配条目,对应的action是OUTPUT=CONTROLLER,固定收到向控制器发送包
    image-20220927163728358
struct ofp_packet_in {
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};

7. PACKET_OUT

image-20220927163750405

struct ofp_packet_out {
    struct ofp_header99 header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};

8. FLOW_MOD
image-20220927163823942

struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */

    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};
struct ofp_action_header {
    uint16_t type;                  /* One of OFPAT_*. */
    uint16_t len;                   /* Length of action, including this
                                       header.  This is the length of action,
                                       including any padding to make it
                                       64-bit aligned. */
    uint8_t pad[4];
};

(三)实验总结

  • 本次实验较简单,主要是使用wireshark进行抓包以及对抓包结果进行分析制作流程图

  • 运行wireshark后,运行拓扑结构后,未在抓包列表中找到OFPT_FLOW_MOD类型,多次重复无果后,尝试输入pingall得到想要的结果

  • 在进行抓包时必须一次性完成所有包的查找分析,否则再次启动虚拟机时,会发生两次抓包同一个包而端口不一致的情况

  • 通过本次实验,我能够熟练地运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包,学会在过滤器输入 "openflow_v1" 或 "openflow_v6" 对数据包进行过滤,对 OpenFlow 协议的数据包交互过程与机制有了更深入的了解。

标签:struct,OpenFlow,端口,实践,header,ofp,交换机,实验,net
From: https://www.cnblogs.com/amb1tion/p/16735752.html

相关文章

  • 实验2:Open vSwitch虚拟交换机实践
    实验2:OpenvSwitch虚拟交换机实践一、实验目的能够对OpenvSwitch进行基本操作;能够通过命令行终端使用OVS命令操作OpenvSwitch交换机,管理流表;能够通过Mininet的Python......
  • 实验2:Open vSwitch虚拟交换机实践
    实验2:OpenvSwitch虚拟交换机实践一、实验目的能够对OpenvSwitch进行基本操作;能够通过命令行终端使用OVS命令操作OpenvSwitch交换机,管理流表;能够通过Mininet的Pytho......
  • 实验3:OpenFlow协议分析实践
    实验报告基本要求/home/用户名/学号/lab3/目录下的拓扑文件wireshark抓包的结果截图1.hello控制器6633端口(我最高能支持OpenFlow1.0)-->交换机45390端口......
  • Open vSwitch虚拟交换机实践
    实验2:OpenvSwitch虚拟交换机实践(一)基本要求1.ovs-vsctl基础操作实践:创建OVS交换机,完成相关要求后查看网络状态与端口信息:2.使用Mininet搭建的SDN拓扑,如下图所示,要求......
  • 实验2:Open vSwitch虚拟交换机实践
    实验2:OpenvSwitch虚拟交换机实践一、实验目的能够对OpenvSwitch进行基本操作;能够通过命令行终端使用OVS命令操作OpenvSwitch交换机,管理流表;能够通过Mininet的Pytho......
  • 实验2:Open vSwitch虚拟交换机实践
    (一)基本要求1.ovs-vsctl基础操作实践:创建OVS交换机,以ovs-xxxxxxxxx命名,其中xxxxxxxxx为本人学号。在创建的交换机上增加端口p0和p1,设置p0的端口号为100,p1的端口号为101,类......
  • 实验3:OpenFlow协议分析实践
    1.搭建下图所示拓扑,完成相关IP配置,并实现主机与主机之间的IP通信。用抓包软件获取控制器与交换机之间的通信数据。搭建拓扑所使用Python代码#!/usr/bin/envpython......
  • 实验3:OpenFlow协议分析实践
    目录基础要求一、拓扑文件二、Wireshark抓包结果1、Hello2、FeaturesRequest3、SetConfig4、Port_Status5、FeaturesReply6、Packet_In7、Flow_Mod8、Packet_Out三、查......
  • 理论与实践:如何写好一个方法
    简介: 个人认为一个好的方法主要表现在可读性、可维护性、可复用性上,本文通过设计原则和代码规范两章来讲解如何提高方法的可读性、可维护性、可复用性。这些设计原则和代......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践(一)基本要求1、拓扑2、抓包(1)hello控制器对交换机发个hello确认下我这个openflow1.0交换机端口51262控制器端口6663(2)Featur......