实验3 OpenFlow协议分时实践
基础实验
抓包分析
step1:搭建拓扑并配置相应IP
IP配置如下:
step2:
Pingall并抓包
step3:分析
(1)hello包
表示含义:控制器6633端口 发送“我最高能支持OpenFlow1.0”信息给交换机38200端口
表示含义:交换机端口38200发“我最高能支持OpenFlow1.0”信息给控制器的6633端口
于是双方建立连接,并使用OpenFlow1.0
(2)Feature_Request
表示含义:控制器6633端口发送“我需要你的特征信息”信息给交换机的38200端口
(3)Set_Config
表示含义:控制器6633端口发送信息“请按照我给你的Flag和Max_Bytes of Packet进行配置"信息给交换机的38200端口
(4)Feature_Reply
表示含义:交换机38200端口发送“这是我的特征信息,请查收”信息给控制器的6633端口
(5)Packet_in
表示含义:交换机38200端口发送“有数据包进入,请指示”信息给控制器的6633端口
(6)Packet_out
表示含义:控制器6633端口发送“请按照我给你的action进行处理”信息给交换机的38200端口
(7)Flow_Mod
表示含义:控制器通过6633端口向交换机38198端口下发流表项,指导数据的转发处理。
(8)Port_status
当交换机端口发生变化时,告知控制器相应的端口状态。
交互图
问题回答
交换机与控制器建立通信时是使用TCP协议还是UDP协议?
TCP协议
进阶要求
查看OpenFlow目录下的头文件
OpenFlow的数据包头通用字段
/* Header on all OpenFlow packets. */
struct ofp_header {
uint8_t version; /* OFP_VERSION. */
uint8_t type; /* One of the OFPT_ constants. */
uint16_t length; /* Length including this ofp_header. */
uint32_t xid; /* Transaction id associated with this packet.
Replies use the same id as was in the request
to facilitate pairing. */
};
物理描述端口
/* Description of a physical port */
struct ofp_phy_port {
uint16_t port_no;
uint8_t hw_addr[OFP_ETH_ALEN];
char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */
uint32_t config; /* Bitmap of OFPPC_* flags. */
uint32_t state; /* Bitmap of OFPPS_* flags. */
/* Bitmaps of OFPPF_* that describe features. All bits zeroed if
* unsupported or unavailable. */
uint32_t curr; /* Current features. */
uint32_t advertised; /* Features being advertised by the port. */
uint32_t supported; /* Features supported by the port. */
uint32_t peer; /* Features advertised by peer. */
};
交换机的特性
/* Switch features. */
struct ofp_switch_features {
struct ofp_header header;
uint64_t datapath_id; /* Datapath unique ID. The lower 48-bits are for
a MAC address, while the upper 16-bits are
implementer-defined. */
uint32_t n_buffers; /* Max packets buffered at once. */
uint8_t n_tables; /* Number of tables supported by datapath. */
uint8_t pad[3]; /* Align to 64-bits. */
/* Features. */
uint32_t capabilities; /* Bitmap of support "ofp_capabilities". */
uint32_t actions; /* Bitmap of supported "ofp_action_type"s. */
/* Port info.*/
struct ofp_phy_port ports[0]; /* Port definitions. The number of ports
is inferred from the length field in
the header. */
};
n_buffers表示交换机缓冲区可以
缓存的最大数据包个数
n_tables表示流表数量
pad作为一个填充值
capabilities表示支持的特殊功能
actions:表示支持的动作
port data表示物理端口描述列表
(1)hello
/* Header on all OpenFlow packets. */
struct ofp_header {
uint8_t version; /* OFP_VERSION. */
uint8_t type; /* One of the OFPT_ constants. */
uint16_t length; /* Length including this ofp_header. */
uint32_t xid; /* Transaction id associated with this packet.
Replies use the same id as was in the request
to facilitate pairing. */
};
OFP_ASSERT(sizeof(struct ofp_header) == 8);
/* OFPT_HELLO. This message has an empty body, but implementations must
* ignore any data included in the body, to allow for future extensions. */
struct ofp_hello {
struct ofp_header header;
};
(2)Feature Request
/* Switch features. */
struct ofp_switch_features {
struct ofp_header header;
uint64_t datapath_id; /* Datapath unique ID. The lower 48-bits are for
a MAC address, while the upper 16-bits are
implementer-defined. */
uint32_t n_buffers; /* Max packets buffered at once. */
uint8_t n_tables; /* Number of tables supported by datapath. */
uint8_t pad[3]; /* Align to 64-bits. */
/* Features. */
uint32_t capabilities; /* Bitmap of support "ofp_capabilities". */
uint32_t actions; /* Bitmap of supported "ofp_action_type"s. */
/* Port info.*/
struct ofp_phy_port ports[0]; /* Port definitions. The number of ports
is inferred from the length field in
the header. */
};
(3) Packet_in
/* Why is this packet being sent to the controller? */
enum ofp_packet_in_reason {
OFPR_NO_MATCH, /* No matching flow. */
OFPR_ACTION /* Action explicitly output to controller. */
};
/* Packet received on port (datapath -> controller). */
struct ofp_packet_in {
struct ofp_header header;
uint32_t buffer_id; /* ID assigned by datapath. */
uint16_t total_len; /* Full length of frame. */
uint16_t in_port; /* Port on which frame was received. */
uint8_t reason; /* Reason packet is being sent (one of OFPR_*) */
uint8_t pad;
uint8_t data[0]; /* Ethernet frame, halfway through 32-bit word,
so the IP header is 32-bit aligned. The
amount of data is inferred from the length
field in the header. Because of padding,
offsetof(struct ofp_packet_in, data) ==
sizeof(struct ofp_packet_in) - 2. */
};
有两种情况:
• 交换机查找流表,发现没有匹配条目时
• 有匹配条目但是对应的action是OUTPUT=CONTROLLER时
图中所示为交换机不知道如何处理数据包因而发送信息给控制器
(4)Flow_mod
/* Flow setup and teardown (controller -> datapath). */
struct ofp_flow_mod {
struct ofp_header header;
struct ofp_match match; /* Fields to match */
uint64_t cookie; /* Opaque controller-issued identifier. */
/* Flow actions. */
uint16_t command; /* One of OFPFC_*. */
uint16_t idle_timeout; /* Idle time before discarding (seconds). */
uint16_t hard_timeout; /* Max time before discarding (seconds). */
uint16_t priority; /* Priority level of flow entry. */
uint32_t buffer_id; /* Buffered packet to apply to (or -1).
Not meaningful for OFPFC_DELETE*. */
uint16_t out_port; /* For OFPFC_DELETE* commands, require
matching entries to include this as an
output port. A value of OFPP_NONE
indicates no restriction. */
uint16_t flags; /* One of OFPFF_*. */
struct ofp_action_header actions[0]; /* The action length is inferred
from the length field in the
header. */
};
(5)Packet_mod
/* Action header that is common to all actions. The length includes the
* header and any padding used to make the action 64-bit aligned.
* NB: The length of an action *must* always be a multiple of eight. */
struct ofp_action_header {
uint16_t type; /* One of OFPAT_*. */
uint16_t len; /* Length of action, including this
header. This is the length of action,
including any padding to make it
64-bit aligned. */
uint8_t pad[4];
};
OFP_ASSERT(sizeof(struct ofp_action_header) == 8);
/* Send packet (controller -> datapath). */
struct ofp_packet_out {
struct ofp_header header;
uint32_t buffer_id; /* ID assigned by datapath (-1 if none). */
uint16_t in_port; /* Packet's input port (OFPP_NONE if none). */
uint16_t actions_len; /* Size of action array in bytes. */
struct ofp_action_header actions[0]; /* Actions. */
/* uint8_t data[0]; */ /* Packet data. The length is inferred
from the length field in the header.
(Only meaningful if buffer_id == -1.) */
};
(6) Packet_out
"请按照我给你的action进行处理"
/* Action header that is common to all actions. The length includes the
* header and any padding used to make the action 64-bit aligned.
* NB: The length of an action *must* always be a multiple of eight. */
struct ofp_action_header {
uint16_t type; /* One of OFPAT_*. */
uint16_t len; /* Length of action, including this
header. This is the length of action,
including any padding to make it
64-bit aligned. */
uint8_t pad[4];
};
OFP_ASSERT(sizeof(struct ofp_action_header) == 8);
/* Send packet (controller -> datapath). */
struct ofp_packet_out {
struct ofp_header header;
uint32_t buffer_id; /* ID assigned by datapath (-1 if none). */
uint16_t in_port; /* Packet's input port (OFPP_NONE if none). */
uint16_t actions_len; /* Size of action array in bytes. */
struct ofp_action_header actions[0]; /* Actions. */
/* uint8_t data[0]; */ /* Packet data. The length is inferred
from the length field in the header.
(Only meaningful if buffer_id == -1.) */
};
实验总结
(1)此次实验的整体过程
在OpenFlow1.3协议的情况下,控制器与OpenFlow交换机的消息完整交互流程如下:
1、 控制器与OpenFlow交换机通过TCP“三次握手”,建立有效的连接。其中,控制器一端的端口号为6633。
2、 控制器与OpenFlow交换机之间相互发送Hello消息,用于协商双方的OpenFlow版本号。在双方支持的最高版本号不一致的情况下,协商的结果将以较低的OpenFlow版本为准。
3、 控制器向OpenFlow交换机发送Features Request消息,请求OpenFlow交换机上传自己的详细参数。OpenFlow交换机收到请求后,向控制器发送Features Reply消息,详细汇报自身参数,包括支持的buffer数目、流表数以及Actions等。
4、 控制器通过Set Config消息下发配置参数,然后通过Get config Request消息请求OpenFlow交换机上传修改后的配置信息。OpenFlow交换机通过Get config Reply消息向控制器发送当前的配置信息。
5、 控制器与OpenFlow交换机之间发送Packet_out、Packet_in消息,通过Packet_out中内置的LLDP包,进行网络拓扑的探测。
6、 控制器与OpenFlow交换机之间通过发送Multipart Request、Mutipart Reply消息,控制器能获取OpenFlow交换机的状态信息,包括流的信息、端口信息等。
7、 控制器与OpenFlow交换机之间通过发送Echo Request、Echo Reply消息,保证二者之间存在有效连接,避免失联。
(2)心得
此次实验,我学习了OpenFlow的协议形式,当交换机不知道如何处理数据包时,会上报给控制器,由控制器指示所需执行的action,加深了我对软件定义网络的理解。