首页 > 其他分享 >智能问答-问题生成(QG)历史最全论文、综述、数据集整理分享

智能问答-问题生成(QG)历史最全论文、综述、数据集整理分享

时间:2023-06-23 15:05:32浏览次数:43  
标签:综述 generation question 最全 Question al paper QG et


智能问答-问题生成(QG)历史最全论文、综述、数据集整理分享_ci

    Question Generation(问题生成),简单理解就是“主动提问”的AI应用场景,是Question Answer(QA)一个子领域。QG 的应用还是挺广泛的,像是为 QA 任务产生训练数据、自动合成 FAQ 文档、自动辅导系统(automatic tutoring systems)等。

    传统工作主要是利用句法树或者知识库,基于规则来产生问题。如基于语法(Heilman and Smith, 2010; Ali et al., 2010; Kumar et al., 2015),基于语义(Mannem et al., 2010; Lindberg et al., 2013),大多是利用规则操作句法树来形成问句。还有是基于模板(templates),定好 slot,然后从文档中找到实体来填充模板(Lindberg et al., 2013; Chali and Golestanirad, 2016)。

 

    本文整理了QG相关的经典、前沿、综述性的论文,涉及篇章级问题生成、基于知识图谱问题生成等,以及一些该领域的公开数据集,评评测指标,分享给大家。

 

    资源整理自网络,源地址:https://github.com/bisheng/QuestionGeneration

 

篇章级别QG

    Harvesting paragraph-level question-answer pairs from wikipedia. Xinya Du, Claire Cardie. ACL, 2018. paper code

 

    Leveraging Context Information for Natural Question Generation. Linfeng Song, Zhiguo Wang, Wael Hamza, Yue Zhang, Daniel Gildea. ACL, 2018. paper code

 

    Paragraph-level Neural Question Generation with Maxout Pointer and Gated Self-attention Networks. Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, Qifa Ke. EMNLP, 2018. paper code

 

    Capturing Greater Context for Question Generation. Luu Anh Tuan, Darsh J Shah, Regina Barzilay. arxiv, 2019. paper code

 

基于知识图谱QG,KBQG

  2014-2019

    Difficulty-controllable Multi-hop Question Generation From Knowledge Graphs. Vishwajeet Kumar, Yuncheng Hua, Ganesh Ramakrishnan, et al. EMNLP, 2019. paper code&dataset

 

    Difficulty-level Modeling of Ontology-based Factual Questions.

 

    Question Difficulty Estimation in Community Question Answering Services.

 

    Domain-specific question generation from a knowledge base.

 

    Generating Quiz Questions from knowledge graphs.

 

    Knowledge Questions from Knowledge Graphs.

 

    Question Generation from a Knowledge Base with Web Exploration.

 

    Question generation from a knowledge base.

 

    Question generation from concept maps.

 

    2008-2013

    A similarity-based theory of controlling MCQ difficulty. Tahani Alsubait, Bijan Parsia, Ulrike Sattler IEEE, 2013. paper

 

    2014-2019

    Let's Ask Again: Refine Network for Automatic Question Generation. Nema P, Mohankumar A K, Khapra M M, et al. arXiv, 2019. paper

 

    Difficulty Controllable Generation of Reading Comprehension Questions. Yifan Gao, Lidong Bing, Wang Chen, et al. IJCAI, 2019. paper

 

    Generating Question-Answer Hierarchies. Kalpesh Krishna and Mohit Iyyer. ACL, 2019. paper code

 

    Improving Generative Visual Dialog by Answering Diverse Questions. Murahari V, Chattopadhyay P, Batra D, et al. arXiv, 2019. paper

 

    Reverse SQL Question Generation Algorithm in the DBLearn Adaptive E-Learning System. Atchariyachanvanich K, Nalintippayawong S, Julavanich T. IEEE, 2019. paper

 

    Interconnected Question Generation with Coreference Alignment and Conversation Flow Modeling. Yifan Gao, Piji Li, Irwin King, et al. ACL, 2019. paper code

 

    Cross-Lingual Training for Automatic Question Generation. Kumar V, Joshi N, Mukherjee A, et al. ACL, 2019. paper dataset

 

    Multi-hop Reading Comprehension through Question Decomposition and Rescoring. Sewon Min, Victor Zhong, Luke Zettlemoyer, et al. ACL, 2019. paper

 

    Learning to Ask Unanswerable Questions for Machine Reading Comprehension. Haichao Zhu, Li Dong, Furu Wei, et al. ACL, 2019.

 

    Reinforced Dynamic Reasoning for Conversational Question Generation. Boyuan Pan, Hao Li, Ziyu Yao, et al. ACL, 2019. paper code dataset

 

    Asking the Crowd: Question Analysis, Evaluation and Generation for Open Discussion on Online Forums. Zi Chai, Xinyu Xing, Xiaojun Wan, et al. ACL, 2019.

 

    Self-Attention Architectures for Answer-Agnostic Neural Question Generation. Thomas Scialom, Benjamin Piwowarski and Jacopo Staiano. ACL, 2019.

 

    Evaluating Rewards for Question Generation Models. Tom Hosking and Sebastian Riedel. NAACL, 2019. paper

 

    Difficulty controllable question generation for reading comprehension. Gao Y, Wang J, Bing L, et al. IJCAI, 2019. paper

 

    Weak Supervision Enhanced Generative Network for Question Generation. Yutong Wang, Jiyuan Zheng, Qijiong Liu, et al. IJCAI, 2019. paper

 

    Answer-based Adversarial Training for Generating Clarification Questions. Rao S, Daumé III H. NAACL, 2019. paper code

 

    Information Maximizing Visual Question Generation. Krishna, Ranjay, Bernstein, Michael, Fei-Fei, Li. arXiv, 2019. paper

 

    Learning to Generate Questions by Learning What not to Generate. Liu B, Zhao M, Niu D, et al. WWW, 2019. paper

 

    Joint Learning of Question Answering and Question Generation. Sun Y, Tang D, Duan N, et al. IEEE, 2019. paper dataset

 

    Domain-specific question-answer pair generation. Beason W A, Chandrasekaran S, Gattiker A E, et al. Google Patents, 2019. paper

 

    Anaphora Reasoning Question Generation Using Entity Coreference. Hasegawa, Kimihiro, Takaaki Matsumoto, and Teruko Mitamura. 2019. paper

 

    Improving Neural Question Generation using Answer Separation. Kim Y, Lee H, Shin J, et al. AAAI, 2019. paper

 

    A novel framework for Automatic Chinese Question Generation based on multi-feature neural network mode Zheng H T, Han J, Chen J Y, et al. Comput. Sci. Inf. Syst., 2018. paper

 

    Visual question generation as dual task of visual question answering. Li Y, Duan N, Zhou B, et al. IEEE, 2018. paper

 

    Answer-focused and Position-aware Neural Question Generation. Sun X, Liu J, Lyu Y, et al. EMNLP, 2018. paper

 

    Automatic Question Generation using Relative Pronouns and Adverbs. Khullar P, Rachna K, Hase M, et al. ACL, 2018. paper

 

    Learning to ask good questions: Ranking clarification questions using neural expected value of perfect information Rao S, Daumé III H. arXiv, 2018. paper dataset

 

    Soft layer-specific multi-task summarization with entailment and question generation. Guo H, Pasunuru R, Bansal M. arXiv, 2018. paper

 

    Leveraging context information for natural question generation Song L, Wang Z, Hamza W, et al. ACL, 2018. paper code

 

    Learning to Ask Questions in Open-domain Conversational Systems with Typed Decoders. Wang Y, Liu C, Huang M, et al. arXiv, 2018. paper code dataset

 

    Did the model understand the question? Mudrakarta P K, Taly A, Sundararajan M, et al. arXiv, 2018. paper code dataset

 

    Know What You Don't Know: Unanswerable Questions for SQuAD. Rajpurkar P, Jia R, Liang P. arXiv, 2018. paper code&dataset

 

    Harvesting paragraph-level question-answer pairs from wikipedia. Du X and Cardie C. arXiv, 2018. paper code&dataset

 

    Teaching Machines to Ask Questions. Kaichun Yao, Libo Zhang, Tiejian Luo, et al. IJCAI, 2018. paper

 

    Question Generation using a Scratchpad Encoder. Benmalek R Y, Khabsa M, Desu S, et al. 2018. paper

 

    Learning to collaborate for question answering and asking. Tang D, Duan N, Yan Z, et al. NAACL, 2018. paper

 

    A Question Type Driven Framework to Diversify Visual Question Generation Zhihao Fan, Zhongyu Wei, Piji Li, et al. IJCAI,2018. paper

 

    Neural Generation of Diverse Questions using Answer Focus, Contextual and Linguistic Features. Harrison V, Walker M. arXiv,2018. paper

 

    Learning to Ask: Neural Question Generation for Reading Comprehension. Xinya Du, Junru Shao, Claire Cardie. ACL, 2017. paper code

 

    Neural question generation from text: A preliminary study. Zhou Q, Yang N, Wei F, et al. NLPCC, 2017. paper

 

    Question answering and question generation as dual tasks. Tang D, Duan N, Qin T, et al. arXiv, 2017. paper

 

    Creativity: Generating diverse questions using variational autoencoders. Jain U, Zhang Z, Schwing A G. IEEE,2017. paper

 

    A joint model for question answering and question generation. Wang, Tong, Xingdi Yuan, and Adam Trischler. arXiv, 2017. paper

 

    Neural models for key phrase detection and question generation. Subramanian S, Wang T, Yuan X, et al. arXiv, 2017. paper

 

    Machine comprehension by text-to-text neural question generation. Yuan X, Wang T, Gulcehre C, et al. arXiv, 2017. paper

 

    Question generation for question answering. Duan N, Tang D, Chen P, et al. EMNLP,2017. paper

 

    Ranking automatically generated questions using common human queries. Chali Y, Golestanirad S. INLG, 2016. paper

 

    Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid Question-Answer Corpus. Serban I V, García-Durán A, Gulcehre C, et al. arXiv, 2016. paper dataset

 

    Towards Topic-to-Question Generation. XYllias Chali, Sadid A. Hasan. Computational Linguistics, 2015. paper

 

    Literature review of automatic question generation systems. Rakangor, Sheetal, and Y. Ghodasara. International Journal of Scientific and Research Publications,2015. paper

 

    Revup: Automatic gap-fill question generation from educational texts. Kumar G, Banchs R and D'Haro L F. ACL, 2015. paper

 

    Deep questions without deep understanding. Labutov I, Basu S and Vanderwende L. ACL, 2015. paper

 

    Ontology-based multiple choice question generation. Al-Yahya, Maha. The Scientific World Journal, 2014. paper

 

    Linguistic considerations in automatic question generation. Mazidi, Karen, and Rodney D. Nielsen. ACL, 2014. paper

 

    Automatic question generation for educational applications–the state of art. Le, Nguyen-Thinh, Tomoko Kojiri, and Niels Pinkwart. ACMKE, 2014. paper

 

 2008-2013

    Generating natural language questions to support learning on-line. Lindberg D, Popowich F, Nesbit J, et al. ENLG, 2013. paper

 

    Question generation for French: collating parsers and paraphrasing questions. Bernhard, Delphine, et al. Dialogue & Discourse,2012. paper dataset1 dataset2

 

    Question generation from concept maps. Olney A M, Graesser A C, Person N K. Dialogue & Discourse, 2012. paper

 

    Towards automatic topical question generation. Chali, Yllias, and Sadid A. Hasan. COLING,2012. paper dataset

 

    Question generation based on lexico-syntactic patterns learned from the web. Curto, Sérgio, Ana Cristina Mendes, and Luisa Coheur. Dialogue & Discourse,2012. paper

 

    G-Asks: An intelligent automatic question generation system for academic writing support. Liu, Ming, Rafael A. Calvo, and Vasile Rus. Dialogue & Discourse, 2012. paper

 

    Semantics-based question generation and implementation. Yao, Xuchen, Gosse Bouma, and Yi Zhang. Dialogue & Discourse,2012. paper system dataset1 dataset2 dataset3 dataset4

 

    Mind the gap: learning to choose gaps for question generation. Becker, Lee, Sumit Basu, and Lucy Vanderwende. NAACL,2012. paper dataset

 

    OntoQue: a question generation engine for educational assesment based on domain ontologies. Al-Yahya, Maha. IEEE, 2011. paper

 

    Automatic gap-fill question generation from text books. Agarwal M, Mannem P. the 6th Workshop on Innovative Use of NLP for Building Educational Applications,2011. paper

 

    Automatic question generation using discourse cues. Agarwal, Manish, Rakshit Shah, and Prashanth Mannem. the 6th Workshop on Innovative Use of NLP for Building Educational Applications,2011. paper

 

    Automatic factual question generation from text. Heilman, Michael. Language Technologies Institute School of Computer Science Carnegie Mellon University 2011. paper

 

    Question generation and answering. Linnebank, Floris, Jochem Liem, and Bert Bredeweg. DynaLearn, EC FP7 STREP project,2010. paper

 

    Question generation from paragraphs at UPenn: QGSTEC system description. Mannem, Prashanth, Rashmi Prasad, and Aravind Joshi. QG2010: The Third Workshop on Question Generation,2010. paper

 

    Question generation with minimal recursion semantics. Yao, Xuchen, and Yi Zhang. QG2010: The Third Workshop on Question Generation. 2010. paper

 

    Natural language question generation using syntax and keywords. Kalady S, Elikkottil A, Das R. QG2010: The Third Workshop on Question Generation, 2010. paper

 

    Automatic question generation for literature review writing support. Liu, Ming, Rafael A. Calvo, and Vasile Rus. International Conference on Intelligent Tutoring Systems,2010. paper

 

    Overview of the first question generation shared task evaluation challenge. Rus, Vasile, et al. the Third Workshop on Question Generation, 2010. paper

 

    Question generation in the CODA project. Piwek, Paul, and Svetlana Stoyanchev. no conference, 2010. paper

 

    The first question generation shared task evaluation challenge. Rus V, Wyse B, Piwek P, et al. INLG, 2010. paper

 

    Extracting simplified statements for factual question generation. Heilman, Michael, and Noah A. Smith. QG2010: The Third Workshop on Question Generation, 2010. paper system

 

    Good Question! Statistical Ranking for Question Generation. Heilman, Michael and Smith, Noah A. ACL, 2010.paper dataset1 dataset2

 

    Automation of question generation from sentences. Ali, H., Chali, Y., Hasan, S. A. QG2010: The Third Workshop on Question Generation 2010. paper

 

    Question Generation via Overgenerating Transformations and Ranking. Michael Heilman, Noah A. Smith. CARNEGIE-MELLON UNIV PITTSBURGH PA LANGUAGE TECHNOLOGIES INST, 2009. paper

 

    Automatic question generation and answer judging: a q&a game for language learning. Yushi Xu, Anna Goldie, Stephanie Seneff. SLaTE, 2009. paper

 

评测

    Unifying Human and Statistical Evaluation for Natural Language Generation. Tatsunori B. Hashimoto, Hugh Zhang, Percy Liang. NAACL, 2019. paper code

 

    Evaluating Rewards for Question Generation Models. Hosking T, Riedel S. arXiv, 2019. paper

 

    The price of debiasing automatic metrics in natural language evaluation. Arun Tejasvi Chaganty, Stephen Mussmann, Percy Liang arXiv, 2018. paper code

 

    BLEU: a Method for Automatic Evaluation of Machine Translation. Kishore Papineni, Salim Roukos, Todd Ward, Wei-Jing Zhu. ACL, 2002. paper

 

    Evaluating question answering over linked data. Lopez V, Unger C, Cimiano P, et al. WWW, 2013. paper

 

    The Meteor metric for automatic evaluation of machine translation. Lavie A, Denkowski M J. Machine translation, 2009. paper

 

    Rouge: A package for automatic evaluation of summaries. Lin, Chin-Yew. Text Summarization Branches Out, 2004. paper

 

数据集

    Program induction by rationale generation: Learning to solve and explain algebraic word problems. Ling W, Yogatama D, Dyer C, et al. arXiv, 2017. paper code

 

    On Generating Characteristic-rich Question Sets for QA Evaluation. Su Y, Sun H, Sadler B, et al. EMNLP, 2016. paper code

 

    Squad: 100,000+ questions for machine comprehension of text. Rajpurkar P, Zhang J, Lopyrev K, et al. arXiv, 2016. paper dataset

 

    Who did what: A large-scale person-centered cloze dataset Onishi T, Wang H, Bansal M, et al. arXiv, 2016. paper dataset

 

    Teaching machines to read and comprehend Hermann K M, Kocisky T, Grefenstette E, et al. NIPS, 2015. paper code

 

    Mctest: A challenge dataset for the open-domain machine comprehension of text. Richardson M, Burges C J C, and Renshaw E. EMNLP, 2013. paper dataset

 

    The Value of Semantic Parse Labeling for Knowledge Base Question Answering. Yih W, Richardson M, Meek C, et al. ACL, 2016. paper dataset

 

    Semantic Parsing on Freebase from Question-Answer Pairs. Berant J, Chou A, Frostig R, et al. EMNLP, 2013. paper

标签:综述,generation,question,最全,Question,al,paper,QG,et
From: https://blog.51cto.com/u_13046751/6537976

相关文章

  • 最新最全-中文生物医学命名实体识别最新研究论文、资源、数据集、性能
        本资源旨在跟踪中文生物医学自然语言处理的进展,收集整理相关的论文列表和展示现存方法性能。    内容整理自网络,源地址:https://github.com/lingluodlut/Chinese-BioNLP    中文电子病历命名实体识别    中文电子病历命名实体识别(ChineseClinicalNamedEntity......
  • 历史最全最新中文自然语言处理预训练模型汇总分享
        在自然语言处理领域中,预训练语言模型(PretrainedLanguageModels)已成为非常重要的基础技术,本仓库主要收集目前网上公开的一些高质量中文预训练模型,并将持续更新。包含自然语言理解系列模型,如BERT、RoBERTa、ALBERT、NEZHA、XLNET、MacBERT、ELECTRA、ZEN、ERNIE。自然语言......
  • 计算机科学|人工智能相关领域历史最全免费课程整理分享
        计算机科学是系统性研究信息与计算的理论基础以及它们在计算机系统中如何实现与应用的实用技术的学科。它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;有些强调特定结果的计算,比如计算机图形学;而有些是探讨计算问题的性质,比......
  • 历史最全DL相关书籍、课程、视频、论文、数据集、会议、框架和工具整理分享
       本文整理了与深度学习、人工智能相关丰富的内容,涉及人工智能相关的思维导图(+100张AI思维导图),深度学习相关的免费在线书籍、课程、视频和讲座、论文、教程、研究人员、网站、数据集、会议、框架、工具等资源。    内容整理自网络,源地址:https://github.com/Niraj-Lunav......
  • 自然语言处理历史最全预训练模型(部署)汇集分享
    什么是预训练模型?预练模型是其他人为解决类似问题而创建的且已经训练好的模型。代替从头开始建立模型来解决类似的问题,我们可以使用在其他问题上训练过的模型作为起点。预训练的模型在相似的应用程序中可能不是100%准确的。本文整理了自然语言处理领域各平台中常用的NLP模型,常......
  • 历史最全ChatGPT、LLM相关书籍、论文、博客、工具、数据集、开源项目等资源整理分享
    ChatGPT是一个生成型预训练变换模型(GPT),使用基于人类反馈的监督学习和强化学习在GPT-3.5之上进行了微调。这两种方法都使用了人类训练员来提高模型的性能,通过人类干预以增强机器学习的效果,从而获得更为逼真的结果。在监督学习的情况下,模型被提供了这样一些对话,在对话中训练......
  • 历史最全最新时间序列分析相关必读论文、教程及综述资源整理分析
    本资源整理了用于时间序列分析(AI4TS)的AI的论文列表(包含可用代码)、教程和关于最近综述论文,包括时间序列、时空数据、事件数据、序列数据、时间点过程等,相关TopAIConferencesandJournals,一旦被接受的论文在相应的顶级AI会议/期刊上公布,就会尽快(最早)更新。希望此列表对......
  • 深度学习社区检测精选综述、论文、数据集及工具整理分享
    社区检测(communitydetection)又被称为是社区发现,它是用来揭示网络聚集行为的一种技术。社区检测实际就是一种网络聚类的方法,这里的“社区”在文献中并没有一种严格的定义,我们可以将其理解为一类具有相同特性的节点的集合。近年来,社区检测得到了快速的发展,这主要是由于复杂网络......
  • 历史最全事件抽取任务分类、经典论文、模型及数据集整理分享
    事件抽取技术是从非结构化信息中抽取出用户感兴趣的事件,并以结构化呈现给用户。事件抽取任务可分解为4个子任务:触发词识别、事件类型分类、论元识别和角色分类任务。其中,触发词识别和事件类型分类可合并成事件识别任务。事件识别判断句子中的每个单词归属的事件类型,是一个基......
  • 历史最全互联网公司常用框架源码赏析整理分享
    “技术深度”与“技术广度”是对开发者来说最为重要的两个维度,本项目致力于从源码层面,剖析和挖掘互联网行业主流技术的底层实现原理,为广大开发者“提升技术深度”提供便利。目前开放的有Spring全家桶、Mybatis、Netty、Dubbo框架,及Redis、Tomcat中间件等,让我们一起开......