首页 > 其他分享 >黑马rabbitmq

黑马rabbitmq

时间:2023-06-11 21:45:41浏览次数:40  
标签:面试官 消费 队列 分区 rabbitmq 消息 RabbitMQ 黑马

消息中间件面试题-参考回答

面试官:RabbitMQ-如何保证消息不丢失

候选人

嗯!我们当时MYSQL和Redis的数据双写一致性就是采用RabbitMQ实现同步的,这里面就要求了消息的高可用性,我们要保证消息的不丢失。主要从三个层面考虑

第一个是开启生产者确认机制,确保生产者的消息能到达队列,如果报错可以先记录到日志中,再去修复数据

第二个是开启持久化功能,确保消息未消费前在队列中不会丢失,其中的交换机、队列、和消息都要做持久化

第三个是开启消费者确认机制为auto,由spring确认消息处理成功后完成ack,当然也需要设置一定的重试次数,我们当时设置了3次,如果重试3次还没有收到消息,就将失败后的消息投递到异常交换机,交由人工处理

面试官:RabbitMQ消息的重复消费问题如何解决的

候选人

嗯,这个我们还真遇到过,是这样的,我们当时消费者是设置了自动确认机制,当服务还没来得及给MQ确认的时候,服务宕机了,导致服务重启之后,又消费了一次消息。这样就重复消费了

因为我们当时处理的支付(订单|业务唯一标识),它有一个业务的唯一标识,我们再处理消息时,先到数据库查询一下,这个数据是否存在,如果不存在,说明没有处理过,这个时候就可以正常处理这个消息了。如果已经存在这个数据了,就说明消息重复消费了,我们就不需要再消费了

面试官:那你还知道其他的解决方案吗?

候选人

嗯,我想想~

其实这个就是典型的幂等的问题,比如,redis分布式锁、数据库的锁都是可以的

面试官:RabbitMQ中死信交换机 ? (RabbitMQ延迟队列有了解过嘛)

候选人

嗯!了解过!

我们当时的xx项目有一个xx业务,需要用到延迟队列,其中就是使用RabbitMQ来实现的。

延迟队列就是用到了死信交换机和TTL(消息存活时间)实现的。

如果消息超时未消费就会变成死信,在RabbitMQ中如果消息成为死信,队列可以绑定一个死信交换机,在死信交换机上可以绑定其他队列,在我们发消息的时候可以按照需求指定TTL的时间,这样就实现了延迟队列的功能了。

我记得RabbitMQ还有一种方式可以实现延迟队列,在RabbitMQ中安装一个死信插件,这样更方便一些,我们只需要在声明交互机的时候,指定这个就是死信交换机,然后在发送消息的时候直接指定超时时间就行了,相对于死信交换机+TTL要省略了一些步骤

面试官:如果有100万消息堆积在MQ , 如何解决 ?

候选人

我在实际的开发中,没遇到过这种情况,不过,如果发生了堆积的问题,解决方案也所有很多的

第一:提高消费者的消费能力 ,可以使用多线程消费任务

第二:增加更多消费者,提高消费速度

使用工作队列模式, 设置多个消费者消费消费同一个队列中的消息

第三:扩大队列容积,提高堆积上限

可以使用RabbitMQ惰性队列,惰性队列的好处主要是

①接收到消息后直接存入磁盘而非内存

②消费者要消费消息时才会从磁盘中读取并加载到内存

③支持数百万条的消息存储

面试官:RabbitMQ的高可用机制有了解过嘛

候选人

嗯,熟悉的~

我们当时项目在生产环境下,使用的集群,当时搭建是镜像模式集群,使用了3台机器。

镜像队列结构是一主多从,所有操作都是主节点完成,然后同步给镜像节点,如果主节点宕机后,镜像节点会替代成新的主节点,不过在主从同步完成前,主节点就已经宕机,可能出现数据丢失

面试官:那出现丢数据怎么解决呢?

候选人

我们可以采用仲裁队列,与镜像队列一样,都是主从模式,支持主从数据同步,主从同步基于Raft协议,强一致。

并且使用起来也非常简单,不需要额外的配置,在声明队列的时候只要指定这个是仲裁队列即可

面试官:Kafka是如何保证消息不丢失

候选人

嗯,这个保证机制很多,在发送消息到消费者接收消息,在每个阶段都有可能会丢失消息,所以我们解决的话也是从多个方面考虑

第一个是生产者发送消息的时候,可以使用异步回调发送,如果消息发送失败,我们可以通过回调获取失败后的消息信息,可以考虑重试或记录日志,后边再做补偿都是可以的。同时在生产者这边还可以设置消息重试,有的时候是由于网络抖动的原因导致发送不成功,就可以使用重试机制来解决

第二个在broker中消息有可能会丢失,我们可以通过kafka的复制机制来确保消息不丢失,在生产者发送消息的时候,可以设置一个acks,就是确认机制。我们可以设置参数为all,这样的话,当生产者发送消息到了分区之后,不仅仅只在leader分区保存确认,在follwer分区也会保存确认,只有当所有的副本都保存确认以后才算是成功发送了消息,所以,这样设置就很大程度了保证了消息不会在broker丢失

第三个有可能是在消费者端丢失消息,kafka消费消息都是按照offset进行标记消费的,消费者默认是自动按期提交已经消费的偏移量,默认是每隔5s提交一次,如果出现重平衡的情况,可能会重复消费或丢失数据。我们一般都会禁用掉自动提价偏移量,改为手动提交,当消费成功以后再报告给broker消费的位置,这样就可以避免消息丢失和重复消费了

面试官:Kafka中消息的重复消费问题如何解决的

候选人

kafka消费消息都是按照offset进行标记消费的,消费者默认是自动按期提交已经消费的偏移量,默认是每隔5s提交一次,如果出现重平衡的情况,可能会重复消费或丢失数据。我们一般都会禁用掉自动提价偏移量,改为手动提交,当消费成功以后再报告给broker消费的位置,这样就可以避免消息丢失和重复消费了

为了消息的幂等,我们也可以设置唯一主键来进行区分,或者是加锁,数据库的锁,或者是redis分布式锁,都能解决幂等的问题

面试官:Kafka是如何保证消费的顺序性

候选人

kafka默认存储和消费消息,是不能保证顺序性的,因为一个topic数据可能存储在不同的分区中,每个分区都有一个按照顺序的存储的偏移量,如果消费者关联了多个分区不能保证顺序性

如果有这样的需求的话,我们是可以解决的,把消息都存储同一个分区下就行了,有两种方式都可以进行设置,第一个是发送消息时指定分区号,第二个是发送消息时按照相同的业务设置相同的key,因为默认情况下分区也是通过key的hashcode值来选择分区的,hash值如果一样的话,分区肯定也是一样的

 

面试官:Kafka的高可用机制有了解过嘛

候选人

嗯,主要是有两个层面,第一个是集群,第二个是提供了复制机制

kafka集群指的是由多个broker实例组成,即使某一台宕机,也不耽误其他broker继续对外提供服务

复制机制是可以保证kafka的高可用的,一个topic有多个分区,每个分区有多个副本,有一个leader,其余的是follower,副本存储在不同的broker中;所有的分区副本的内容是都是相同的,如果leader发生故障时,会自动将其中一个follower提升为leader,保证了系统的容错性、高可用性

面试官:解释一下复制机制中的ISR

候选人

ISR的意思是in-sync replica,就是需要同步复制保存的follower

其中分区副本有很多的follower,分为了两类,一个是ISR,与leader副本同步保存数据,另外一个普通的副本,是异步同步数据,当leader挂掉之后,会优先从ISR副本列表中选取一个作为leader,因为ISR是同步保存数据,数据更加的完整一些,所以优先选择ISR副本列表

面试官:Kafka数据清理机制了解过嘛

候选人

嗯,了解过~~

Kafka中topic的数据存储在分区上,分区如果文件过大会分段存储segment

每个分段都在磁盘上以索引(xxxx.index)和日志文件(xxxx.log)的形式存储,这样分段的好处是,第一能够减少单个文件内容的大小,查找数据方便,第二方便kafka进行日志清理。

在kafka中提供了两个日志的清理策略:

第一,根据消息的保留时间,当消息保存的时间超过了指定的时间,就会触发清理,默认是168小时( 7天)

第二是根据topic存储的数据大小,当topic所占的日志文件大小大于一定的阈值,则开始删除最久的消息。这个默认是关闭的

这两个策略都可以通过kafka的broker中的配置文件进行设置

面试官:Kafka中实现高性能的设计有了解过嘛

候选人

Kafka 高性能,是多方面协同的结果,包括宏观架构、分布式存储、ISR 数据同步、以及高效的利用磁盘、操作系统特性等。主要体现有这么几点:

消息分区:不受单台服务器的限制,可以不受限的处理更多的数据

顺序读写:磁盘顺序读写,提升读写效率

页缓存:把磁盘中的数据缓存到内存中,把对磁盘的访问变为对内存的访问

零拷贝:减少上下文切换及数据拷贝

消息压缩:减少磁盘IO和网络IO

分批发送:将消息打包批量发送,减少网络开销

 

 

标签:面试官,消费,队列,分区,rabbitmq,消息,RabbitMQ,黑马
From: https://www.cnblogs.com/jjta/p/17473663.html

相关文章

  • 黑马redis相关问题
    Redis相关面试题面试官:什么是缓存穿透?怎么解决?候选人:嗯~~,我想一下缓存穿透是指查询一个一定不存在的数据,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到DB去查询,可能导致DB挂掉。这种情况大概率是遭到了攻击。解决方案的话,我们通常都......
  • 黑马mysql问题
    MySQL面试题-文稿面试官:MySQL中,如何定位慢查询?候选人:嗯~,我们当时做压测的时候有的接口非常的慢,接口的响应时间超过了2秒以上,因为我们当时的系统部署了运维的监控系统Skywalking,在展示的报表中可以看到是哪一个接口比较慢,并且可以分析这个接口哪部分比较慢,这里可以看到SQL的......
  • 黑马框架篇相关问题
    框架篇面试题-参考回答面试官:Spring框架中的单例bean是线程安全的吗?候选人:嗯!不是线程安全的,是这样的当多用户同时请求一个服务时,容器会给每一个请求分配一个线程,这是多个线程会并发执行该请求对应的业务逻辑(成员方法),如果该处理逻辑中有对该单列状态的修改(体现为该单例的成员......
  • uniapp-黑马优选学习01
    01.IDE使用HBuilderX02.scss/sass插件安装:为了方便样式的编写   地址: https://ext.dcloud.net.cn/plugin?name=compile-node-sass03.快捷键方案的设置、IDE主题色的设置、基本设置(ctlr加alt加逗号 :  ctrl+alt+, )    >>其它基本......
  • RabbitMQ 消息队列处理库存解锁及关单
    添加RMQ配置<!--使用高级消息队列来解决分布式事务一致性--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId></dependency>application.properties#=====......
  • 基于k8s环境部署RabbitMQ集群
    一、前言本次案例是基于Statefulset部署RabbitMQ集群,同时基于StorageClass(存储类)来作为集群数据的持久化后端,因此在此之前已经部署好了NSF作为后端存储  1、创建服务命名空间Namespace#kubectlcreatensrabbitmq2、创建rbac权限ServiceAccount是kubernetesPod中的......
  • 黑马程序员前端-CSS入门总结
    css入门总结一、css简介1.1css语法规范1.2css代码风格:1.3css选择器的作用二、css基础选择器2.1标签选择器:2.2类选择器2.3多类名选择器2.4id选择器:2.5id选择器和类选择器的区别:2.6通配符选择器:2.7选择器总结三、css字体属性:3.1字体大小:3.2字体粗细:3.3字体样式:3.4字体......
  • 【黑马C++笔记】(二)实战:通讯录管理系统
    通讯录管理系统1、系统需求通讯录是一个可以记录亲人、好友信息的工具。本教程主要利用C++来实现一个通讯录管理系统系统中需要实现的功能如下:添加联系人:向通讯录中添加新人,信息包括(姓名、性别、年龄、联系电话、家庭住址)最多记录1000人显示联系人:显示通讯录中所有联系人信......
  • 【黑马C++笔记】(一)C++基础语法入门
    C++基础入门1C++初识1.1第一个C++程序编写一个C++程序总共分为4个步骤创建项目创建文件编写代码运行程序1.1.1创建项目​ VisualStudio是我们用来编写C++程序的主要工具,我们先将它打开1.1.2创建文件右键源文件,选择添加->新建项给C++文件起个名称,然后点击添......
  • RabbitMQ 延时队列
    分布式事务-最终一致性库存解锁逻辑一、Seata的不足Seata的AT模式是二阶段提交协议(2PC),第一阶段将本地事务直接提交,第二阶段想要回滚的时候,是通过回滚日志(日志表)做的反向补偿,数据库原来是多少又改了回来。Seata应用场景:后台管理系统,比如添加商品,优惠、库存、积分、会员要成功都成......