例1: 求:$$\lim_{x \to \frac{\pi}{2}} \sin(x)^{\tan(x)}$$
\(\\\)
一般这种指数形,我们都往\(\lim\limits_{x \to +\infty}\left( 1+\frac{1}{x}\right)^{x} = e\)这个重要极限上凑,所以这个式子我们可以化为:
\(\\\)
所以,最后答案为:$$e^{0} = 1$$
\(\\\)
例2:求$$\lim\limits_{n \to +\infty} \left( \cos(\frac{x}{n}) + \lambda \sin(\frac{x}{n})\right) ^ {n}$$
\(\\\)
有个\(n\)次方,想办法提下来,变为:\(e ^ {\lim\limits_{n \to +\infty} n \times \ln\left( \cos(\frac{x}{n})+\lambda\sin(\frac{x}{n})\right)}\),对于\(\lim\limits_{n \to +\infty} n \times \ln\left( \cos(\frac{x}{n})+\lambda\sin(\frac{x}{n})\right)\),发现为无穷乘0型,变形为:\(\lim\limits_{n \to +\infty}\dfrac{\ln\left( \cos(\frac{x}{n} + \lambda\sin(\frac{x}{n}))\right)}{\frac{1}{n}}\),运用洛必达法则,则有$$\lim\limits_{n \to +\infty} \dfrac{\frac{1}{\cos(\frac{x}{n}) + \lambda\sin(\frac{x}{n})}\times \left(-\sin(\frac{x}{n}) + \lambda\cos(\frac{x}{n})\right) \times x\left( \frac{1}{n}\right) ^ {'} }{\left(\frac{1}{n} \right) ^ {'}} $$ $$\ \lim\limits_{n \to +\infty} \frac{1}{\cos(\frac{x}{n}) + \lambda\sin(\frac{x}{n})}\times \left(-\sin(\frac{x}{n}) + \lambda\cos(\frac{x}{n})\right) \times x $$ $$\ \lim\limits_{n \to +\infty}\dfrac{\lambda \times \cos(0) \times x}{\cos(0) + \sin(0)}$$,所以最终为\(\lambda x\),即最终答案为$$e ^ {\lambda x}$$
\(\\\)
例3:$$\lim\limits_{n \to +\infty} (1+x)(1+x ^ {2})(1+x ^ {4})(1+x ^ {8})...(1+x ^ {2 ^ {n}}), |x| < 1$$
\(\\\)
方法1:我们发现\(x\)的指数后一项都是前一项的二倍,即每一项\(x\)都是前面的平方,容易想到平方差公式?将式子化为:$$\lim\limits_{n \to +\infty}\dfrac{(1-x) \times (1+x)(1+x ^ {2})(1+x ^ {4})(1+x ^ {8})...(1+x ^ {2 ^ {n}})}{1-x}$$
最终为:$$\lim\limits_{n \to +\infty} \frac{ 1-x ^ {2 ^ {n}}}{1-x} = \frac{1}{1-x}$$
\(\\\)
方法2:找规律吧??
我们列举一下\(n\)取不同值的情况:$$1 + x$$ $$1 + x + x ^ {2} + x ^ {3}$$ $$1 + x + x ^ {2} + x ^ {3} + x ^ {4} + x ^ {5} + x ^ {6} + x ^ {7}$$
我们发现都是加到\(x ^ {2 ^ {n} - 1}\),所以原式为:$$1 + x + x ^ 2 + ... + x ^ {2 ^ {n}-1}$$,观察就是等比数列求和:
\(\\\)
标签:infty,cos,frac,limits,lim,极限,sin From: https://www.cnblogs.com/Miraclys/p/16732099.html