实验了效果,下面的还是图像的异常检测居多。
https://github.com/LeeDoYup/AnoGAN
https://github.com/tkwoo/anogan-keras
看了下,本质上是半监督学习,一开始是有分类模型的。代码如下,生产模型和判别模型:
### generator model define
def generator_model():
inputs = Input((10,))
fc1 = Dense(input_dim=10, units=128*7*7)(inputs)
fc1 = BatchNormalization()(fc1)
fc1 = LeakyReLU(0.2)(fc1)
fc2 = Reshape((7, 7, 128), input_shape=(128*7*7,))(fc1)
up1 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(fc2)
conv1 = Conv2D(64, (3, 3), padding='same')(up1)
conv1 = BatchNormalization()(conv1)
conv1 = Activation('relu')(conv1)
up2 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv1)
conv2 = Conv2D(1, (5, 5), padding='same')(up2)
outputs = Activation('tanh')(conv2)
model = Model(inputs=[inputs], outputs=[outputs])
return model
### discriminator model define
def discriminator_model():
inputs = Input((28, 28, 1))
conv1 = Conv2D(64, (5, 5), padding='same')(inputs)
conv1 = LeakyReLU(0.2)(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, (5, 5), padding='same')(pool1)
conv2 = LeakyReLU(0.2)(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
fc1 = Flatten()(pool2)
fc1 = Dense(1)(fc1)
outputs = Activation('sigmoid')(fc1)
model = Model(inputs=[inputs], outputs=[outputs])
return model
对于无监督GAN就搞不定了!
https://zhuanlan.zhihu.com/p/32505627
https://arxiv.org/pdf/1805.06725.pdf
https://www.ctolib.com/tkwoo-anogan-keras.html
https://github.com/trigrass2/wgan-gp-anomaly/tree/master/models
标签:inputs,fc1,outputs,conv1,SAE,网络流量,conv2,监督,model From: https://blog.51cto.com/u_11908275/6405423