基本思想:
动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。
应用场景:
动态规划求解具有以下的性质:
最优子结构性质、子问题重叠性质
最优子结构性质:最优解包含了其子问题的最优解,不是合并所有子问题的解,而是找最优的一条解线路,选择部分子最优解来达到最终的最优解。
子问题重叠性质:先计算子问题的解,再由子问题的解去构造问题的解(由于子问题存在重叠,把子问题解记录下来为下一步使用,这样就直接可以从备忘录中读取)。其中备忘录中先记录初始状态。
2、求解思路
①、将原问题分解为子问题(子问题和原问题形式相同,且子问题解求出就会被保存);
②、确定状态:01背包中一个状态就是NN个物体中第ii个是否放入体积为VV背包中;
③、确定一些初始状态(边界状态)的值;
④、确定状态转移方程,如何从一个或多个已知状态求出另一个未知状态的值。(递推型)
01背包问题求解思路
①、确认子问题和状态
01背包问题需要求解的就是,为了体积V的背包中物体总价值最大化,NN件物品中第ii件应该放入背包中吗?(其中每个物品最多只能放一件)
为此,我们定义一个二维数组,其中每个元素代表一个状态,即前ii个物体中若干个放入体积为VV背包中最大价值。数组为:f[N][V]f[N][V],其中fijfij表示前ii件中若干个物品放入体积为jj的背包中的最大价值。
②、初始状态
初始状态为f[0][0−V]f[0][0−V]和f[0−N][0]f[0−N][0]都为0,前者表示前0个物品(也就是空物品)无论装入多大的包中总价值都为0,后者表示体积为0的背包啥价值的物品都装不进去。
③、转移函数
if (背包体积j小于物品i的体积)
f[i][j] = f[i-1][j] //背包装不下第i个物体,目前只能靠前i-1个物体装包
else
f[i][j] = max(f[i-1][j], f[i-1][j-Vi] + Wi)
最后一句的意思就是根据“为了体积V的背包中物体总价值最大化,NN件物品中第ii件应该放入背包中吗?”转化而来的。ViVi表示第ii件物体的体积,WiWi表示第ii件物品的价值。这样f[i-1][j]代表的就是不将这件物品放入背包,而f[i-1][j-Vi] + Wi则是代表将第i件放入背包之后的总价值,比较两者的价值,得出最大的价值存入现在的背包之中。
#include<iostream>
using namespace std;
int main()
{
int nArr[6][13] = {{0}};
int nCost[6] = {0 , 2 , 5 , 3 , 10 , 4}; //花费
int nVol[6] = {0 , 1 , 3 , 2 , 6 , 2}; //物体体积
int bagV = 12;
for( int i = 1; i< sizeof(nCost)/sizeof(int); i++)
{
for( int j = 1; j<=bagV; j++)
{
if(j<nVol[i])
nArr[i][j] = nArr[i-1][j];
else
nArr[i][j] = max(nArr[i-1][j] , nArr[i-1][j-nVol[i]] + nCost[i]);
cout<<nArr[i][j]<<' ';
}
cout<<endl;
}
cout<<nArr[5][12]<<endl;
return 0;
}
01背包问题其实就可以化简为涂写下面的表格,其中每个数对应数组nArr中每个元素,初始化部分为0,然后从左上角按行求解,一直求解到右下角获取最终解nArr[5][12]。
标签:ii,背包,求解,int,问题,最优,动态,规划 From: https://blog.51cto.com/u_16147764/6396715