!pip install transformers==4.2.1
!pip install sentencepiece==0.1.95
Vaswani 等人在其名作 Attention is all you need 中首创了 基于 transformer 的编码器-解码器模型,如今已成为自然语言处理 (natural language processing,NLP) 领域编码器-解码器架构的 事实标准 。
最近基于 transformer 的编码器-解码器模型训练这一方向涌现出了大量关于 预训练目标函数 的研究, 例如 T5、Bart、Pegasus、ProphetNet、Marge 等,但它们所使用的网络结构并没有改变。
本文的目的是 详细 解释如何用基于 transformer 的编码器-解码器架构来对 序列到序列 (sequence-to-sequence) 问题进行建模。我们将重点关注有关这一架构的数学知识以及如何对该架构的模型进行推理。在此过程中,我们还将介绍 NLP 中序列到序列模型的一些背景知识,并将 基于 transformer 的编码器-解码器架构分解为 编码器 和 解码器 这两个部分分别讨论。我们提供了许多图例,并把 基于 transformer 的编码器-解码器模型的理论与其在
标签:编码器,mathbf,RNN,text,解码器,Transformers,向量 From: https://www.cnblogs.com/huggingface/p/17447475.html