今天我们学习如何有效地求表达式
的值。对于这个问题,用二分解决比较好。
(1)当
时,
(2)当
时,那么有
(3)当
时,那么有
代码:
#include <iostream>
#include <string.h>
#include <stdio.h>
using namespace std;
const int M = 1000000007;
typedef long long LL;
LL power(LL a,LL b)
{
LL ans = 1;
a %= M;
while(b)
{
if(b & 1)
{
ans = ans * a % M;
b--;
}
b >>= 1;
a = a * a % M;
}
return ans;
}
LL sum(LL a,LL n)
{
if(n == 1) return a;
LL t = sum(a,n/2);
if(n & 1)
{
LL cur = power(a,n/2+1);
t = (t + t * cur % M) % M;
t = (t + cur) % M;
}
else
{
LL cur = power(a,n/2);
t = (t + t * cur % M) % M;
}
return t;
}
int main()
{
LL a,n;
while(cin>>a>>n)
cout<<sum(a,n)<<endl;
return 0;
}
题目:http://poj.org/problem?id=3233
题意:矩阵求和
代码:
#include <iostream>
#include <string.h>
#include <stdio.h>
using namespace std;
const int N = 35;
struct Matrix
{
int m[N][N];
};
Matrix I;
int n,k,M;
Matrix add(Matrix a,Matrix b)
{
Matrix c;
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
{
c.m[i][j] = a.m[i][j] + b.m[i][j];
c.m[i][j] %= M;
}
}
return c;
}
Matrix multi(Matrix a,Matrix b)
{
Matrix c;
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
{
c.m[i][j] = 0;
for(int k=0; k<n; k++)
c.m[i][j] += a.m[i][k] * b.m[k][j];
c.m[i][j] %= M;
}
}
return c;
}
Matrix power(Matrix A,int n)
{
Matrix ans = I,p = A;
while(n)
{
if(n & 1)
{
ans = multi(ans,p);
n--;
}
n >>= 1;
p = multi(p,p);
}
return ans;
}
Matrix sum(Matrix A,int k)
{
if(k == 1) return A;
Matrix t = sum(A,k/2);
if(k & 1)
{
Matrix cur = power(A,k/2+1);
t = add(t,multi(t,cur));
t = add(t,cur);
}
else
{
Matrix cur = power(A,k/2);
t = add(t,multi(t,cur));
}
return t;
}
int main()
{
while(scanf("%d%d%d",&n,&k,&M)!=EOF)
{
Matrix A;
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
{
scanf("%d",&A.m[i][j]);
A.m[i][j] %= M;
I.m[i][j] = (i==j);
}
}
Matrix ans = sum(A,k);
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
printf("%d ",ans.m[i][j]);
puts("");
}
}
return 0;
}
标签:二分,等比数列,Matrix,求和,LL,int,return,include,cur From: https://blog.51cto.com/u_16146153/6388635